
Johnny Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3715113/publications.pdf Version: 2024-02-01

Ιομνιν Ηο

#	Article	IF	CITATIONS
1	Shrinkage, cementitious paste volume, and wet packing density of concrete. Structural Concrete, 2022, 23, 488-504.	3.1	56
2	Impact of condensed silica fume on splitting tensile strength and brittleness of high strength selfâ€compacting concrete. Structural Concrete, 2022, 23, 604-618.	3.1	5
3	Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 2022, 316, 125751.	7.2	58
4	Effect of concrete wet packing density on the uniâ€axial strength of manufactured sand <scp>CFST</scp> columns. Structural Concrete, 2022, 23, 2615-2629.	3.1	35
5	Effect of fillers on the behaviour of low carbon footprint concrete at and after exposure to elevated temperatures. Journal of Building Engineering, 2022, 51, 104117.	3.4	18
6	Postâ€fire behavior of steel slag fine aggregate concrete. Structural Concrete, 2022, 23, 3672-3695.	3.1	32
7	Manufacture and behaviour of innovative 3D printed auxetic composite panels subjected to low-velocity impact load. Structures, 2022, 38, 910-933.	3.6	34
8	A 14-year study on ceramic waste slag-based lightweight aggregate concrete. Construction and Building Materials, 2022, 330, 127152.	7.2	3
9	Effect of fillers on the behaviour of heavy-weight concrete made by iron sand. Construction and Building Materials, 2022, 332, 127357.	7.2	44
10	Effect of fillers on the mechanical properties and durability of steel slag concrete. Construction and Building Materials, 2022, 335, 127495.	7.2	66
11	Impact of Limestone Powder on the Mechanical and Microstructure Properties of Magnesium Oxychloride Cement Pastes. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	1
12	Dilatancy reversal in superplasticised cementitious mortar. Magazine of Concrete Research, 2021, 73, 828-842.	2.0	32
13	Interdependence of passing ability, dilatancy and wet packing density of concrete. Construction and Building Materials, 2021, 270, 121440.	7.2	64
14	Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate. Construction and Building Materials, 2021, 277, 122269.	7.2	84
15	Shrinkage design model of concrete incorporating wet packing density. Construction and Building Materials, 2021, 280, 122448.	7.2	56
16	Uni-axial behaviour of expansive CFST and DSCFST stub columns. Engineering Structures, 2021, 237, 112193.	5.3	58
17	Impact of Elevated Temperatures on the Performance of High-Strength Engineered Cementitious Composite. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	5
18	Zeolite to improve strength-shrinkage performance of high-strength engineered cementitious composite. Construction and Building Materials, 2020, 234, 117335.	7.2	52

Јонилу Но

#	Article	IF	CITATIONS
19	A stress-path dependent stress-strain model for FRP-confined concrete. Engineering Structures, 2020, 203, 109824.	5.3	206
20	Cause and mitigation of dilatancy in cement powder paste. Construction and Building Materials, 2020, 236, 117595.	7.2	64
21	Behaviour of FRP tube-concrete-encased steel composite columns. Composite Structures, 2020, 241, 112139.	5.8	61
22	Greener engineered cementitious composite (ECC) – The use of pozzolanic fillers and unoiled PVA fibers. Construction and Building Materials, 2020, 247, 118211.	7.2	52
23	A path dependent constitutive model for CFFT column. Engineering Structures, 2020, 210, 110367.	5.3	158
24	Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers. Structural Concrete, 2020, 21, 1164-1180.	3.1	62
25	A path dependent stress-strain model for concrete-filled-steel-tube column. Engineering Structures, 2020, 211, 110312.	5.3	179
26	Fatigue behaviour of composite sandwich beams strengthened with GFRP stiffeners. Engineering Structures, 2020, 214, 110596.	5.3	26
27	Experimental investigation on hollow-steel-tube columns with external confinements. Journal of Constructional Steel Research, 2020, 166, 105865.	3.9	60
28	Fillers to improve passing ability of concrete. Structural Concrete, 2019, 20, 185-197.	3.1	162
29	Uni-axial behaviour of externally confined UHSCFST columns. Thin-Walled Structures, 2019, 142, 19-36.	5.3	105
30	Effects of external confinement on structural performance of concrete-filled steel tubes. Journal of Constructional Steel Research, 2017, 132, 72-82.	3.9	55
31	Multi-sized fillers to improve strength and flowability of concrete. Advances in Cement Research, 2017, 29, 112-124.	1.6	30
32	Fillers to lessen shear thickening of cement powder paste. Construction and Building Materials, 2017, 142, 268-279.	7.2	45
33	Limestone and silica fume to improve concurrent flowability–segregation limits of concrete. Magazine of Concrete Research, 2017, 69, 1189-1202.	2.0	12
34	An analysis-based model for axially loaded circular CFST columns. Thin-Walled Structures, 2017, 119, 770-781.	5.3	66
35	Filler to improve concurrent flowability and segregation performance of concrete. Australian Journal of Structural Engineering, 2017, 18, 73-85.	1.1	11

Јонилу Но

#	Article	IF	CITATIONS
37	Shear thickening of cement powder paste – why and how to mitigate?. HKIE Transactions, 2017, 24, 193-203.	0.1	10
38	Axial and lateral stress–strain model for circular concrete-filled steel tubes with external steel confinement. Engineering Structures, 2016, 117, 528-541.	5.3	70
39	Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets. Engineering Structures, 2016, 126, 365-378.	5.3	41
40	A new analysis method for polymer-confined concrete columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 892-911.	0.8	7
41	A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns. Engineering Structures, 2016, 125, 124-143.	5.3	177
42	Axial and lateral stress–strain model for concrete-filled steel tubes. Journal of Constructional Steel Research, 2016, 122, 421-433.	3.9	34
43	Optimal design of external rings for confined CFST columns. Magazine of Concrete Research, 2015, 67, 1017-1032.	2.0	25
44	Finite element analysis of axially loaded FRP-confined rectangular concrete columns. Engineering Structures, 2015, 100, 253-263.	5.3	45
45	Effects of confining stiffness and rupture strain on performance of FRP confined concrete. Engineering Structures, 2015, 97, 1-14.	5.3	35
46	A constitutive model for predicting the lateral strain of confined concrete. Engineering Structures, 2015, 91, 155-166.	5.3	131
47	Axial and lateral stress–strain model for FRP confined concrete. Engineering Structures, 2015, 99, 285-295.	5.3	126
48	Concurrent flexural strength and ductility design of RC beams via strain-gradient-dependent concrete stress-strain curve. Structural Design of Tall and Special Buildings, 2015, 24, 629-652.	1.9	3
49	Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets. Thin-Walled Structures, 2015, 97, 11-21.	5.3	70
50	Effect of continuous spirals on uni-axial strength and ductility of CFST columns. Journal of Constructional Steel Research, 2015, 104, 235-249.	3.9	82
51	Curvature-relevant analysis of eccentrically loaded circular concrete-filled steel tube columns. Magazine of Concrete Research, 2014, 66, 1263-1276.	2.0	5
52	Uniaxial behaviour of confined high-strength concrete-filled-steel-tube columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2014, 167, 520-533.	0.8	27
53	Experimental and theoretical studies of confined HSCFST columns under uni-axial compression. Earthquake and Structures, 2014, 7, 527-552.	1.0	12
54	Improving strength, stiffness and ductility of CFDST columns by external confinement. Thin-Walled Structures, 2014, 75, 18-29.	5.3	41

Јонилу Но

#	Article	IF	CITATIONS
55	Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Engineering Structures, 2014, 67, 123-141.	5.3	166
56	Strain gradient effects on flexural strength design of normalâ€strength concrete beams. Structural Design of Tall and Special Buildings, 2013, 22, 29-49.	1.9	3
57	Deformability design of highâ€performance concrete beams. Structural Design of Tall and Special Buildings, 2013, 22, 729-748.	1.9	0
58	Behaviour of uni-axially loaded CFST columns confined by tie bars. Journal of Constructional Steel Research, 2013, 83, 37-50.	3.9	68
59	Strain-Gradient-Dependent Stress-Strain Curve for Normal-Strength Concrete. Advances in Structural Engineering, 2013, 16, 1911-1930.	2.4	5
60	Flexural ductility and deformability of concrete beams incorporating highâ€performance materials. Structural Design of Tall and Special Buildings, 2012, 21, 114-132.	1.9	12
61	Uni-axial behaviour of normal-strength CFDST columns with external steel rings. Steel and Composite Structures, 2012, 13, 587-606.	1.3	20
62	Limited ductility design of reinforced concrete columns for tall buildings in low to moderate seismicity regions. Structural Design of Tall and Special Buildings, 2011, 20, 102-120.	1.9	22
63	Effectiveness of adding confinement for ductility improvement of high-strength concrete columns. Engineering Structures, 2010, 32, 714-725.	5.3	83
64	Length of critical region for confinement steel in limited ductility high-strength reinforced concrete columns. Engineering Structures, 2009, 31, 2896-2908.	5.3	81
65	Flexural ductility of high-strength concrete columns with minimal confinement. Materials and Structures/Materiaux Et Constructions, 2009, 42, 909-921.	3.1	36
66	Effects of concrete grade and steel yield strength on flexural ductility of reinforced concrete beams. Australian Journal of Structural Engineering, 2004, 5, 1-20.	1.1	10
67	Minimum flexural ductility design of high-strength concrete beams. Magazine of Concrete Research, 2004, 56, 13-22.	2.0	34
68	Inelastic design of low-axially loaded high-strength reinforced concrete columns. Engineering Structures, 2003, 25, 1083-1096.	5.3	100
69	Theoretical analysis of post-peak flexural behaviour of normal- and high-strength concrete beams. Structural Design of Tall and Special Buildings, 2003, 12, 109-125.	1.9	45
70	Influence of Transverse Steel Configuration on Post-elastic Behaviour of High-strength Reinforced Concrete Columns. HKIE Transactions, 2003, 10, 1-9.	0.1	6
71	Effects of Using High-strength Concrete on Flexural Ductility of Reinforced Concrete Beams. HKIE Transactions, 2002, 9, 14-21.	0.1	0
72	Flexural strength and ductility of reinforced concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2002, 152, 361-369.	0.8	37