Taehee Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714880/publications.pdf Version: 2024-02-01

TAFHEF HWANC

#	Article	IF	CITATIONS
1	Widespread decline of Congo rainforest greenness in the past decade. Nature, 2014, 509, 86-90.	13.7	351
2	Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research, 2009, 114, .	3.3	145
3	Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 2011, 26, 541-556.	1.9	119
4	Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sensing of Environment, 2011, 115, 2499-2512.	4.6	119
5	Ecosystem processes at the watershed scale: Hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments. Water Resources Research, 2012, 48, .	1.7	82
6	Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment. Water Resources Research, 2009, 45, .	1.7	78
7	Divergent phenological response to hydroclimate variability in forested mountain watersheds. Global Change Biology, 2014, 20, 2580-2595.	4.2	71
8	Evaluating drought effect on MODIS Gross Primary Production (GPP) with an ecoâ€hydrological model in the mountainous forest, East Asia. Global Change Biology, 2008, 14, 1037-1056.	4.2	69
9	Optical remote sensing of terrestrial ecosystem primary productivity. Progress in Physical Geography, 2013, 37, 834-854.	1.4	59
10	Nonstationary Hydrologic Behavior in Forested Watersheds Is Mediated by Climateâ€Induced Changes in Growing Season Length and Subsequent Vegetation Growth. Water Resources Research, 2018, 54, 5359-5375.	1.7	52
11	Watershed impacts of climate and land use changes depend on magnitude and land use context. Ecohydrology, 2017, 10, e1870.	1.1	49
12	Downstream changes in river avulsion style are related to channel morphology. Nature Communications, 2020, 11, 2116.	5.8	49
13	Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest. Hydrological Processes, 2015, 29, 3519-3534.	1.1	47
14	Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States. Remote Sensing of Environment, 2015, 159, 167-180.	4.6	44
15	Warmingâ€Induced Earlier Greenup Leads to Reduced Stream Discharge in a Temperate Mixed Forest Catchment. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1960-1975.	1.3	43
16	Ecosystem processes at the watershed scale: Mapping and modeling ecohydrological controls of landslides. Geomorphology, 2012, 137, 159-167.	1.1	40
17	Simulating vegetation controls on hurricaneâ€induced shallow landslides with a distributed ecohydrological model. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 361-378.	1.3	36
18	Increased water yield due to the hemlock woolly adelgid infestation in New England. Geophysical Research Letters, 2017, 44, 2327-2335.	1.5	29

TAEHEE HWANG

#	Article	IF	CITATIONS
19	El Niño outhern Oscillationâ€Induced Variability of Terrestrial Gross Primary Production During the Satellite Era. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2419-2431.	1.3	23
20	Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies. Remote Sensing of Environment, 2017, 199, 350-359.	4.6	21
21	Ecohydrological flow networks in the subsurface. Ecohydrology, 2014, 7, 1073-1078.	1.1	19
22	Atmospheric teleconnection influence on North American land surface phenology. Environmental Research Letters, 2018, 13, 034029.	2.2	19
23	Ecosystem processes at the watershed scale: Influence of flowpath patterns of canopy ecophysiology on emergent catchment water and carbon cycling. Ecohydrology, 2019, 12, e2093.	1.1	19
24	Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: A model sensitivity analysis. Water Resources Research, 2015, 51, 2680-2695.	1.7	18
25	Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems?. Hydrology and Earth System Sciences, 2014, 18, 1423-1437.	1.9	17
26	Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agricultural and Forest Meteorology, 2018, 253-254, 71-83.	1.9	16
27	Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments ¹ . Journal of the American Water Resources Association, 2012, 48, 546-557.	1.0	12
28	Climate Change May Increase the Drought Stress of Mesophytic Trees Downslope With Ongoing Forest Mesophication Under a History of Fire Suppression. Frontiers in Forests and Global Change, 2020, 3, .	1.0	10
29	Land cover change-induced decline in terrestrial gross primary production over the conterminous United States from 2001 to 2016. Agricultural and Forest Meteorology, 2021, 308-309, 108609.	1.9	10
30	Widespread Mismatch Between Phenology and Climate in Humanâ€Dominated Landscapes. AGU Advances, 2021, 2, .	2.3	10
31	The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. BioScience, 2022, 72, 333-346.	2.2	9
32	Monitoring Forest Infestation and Fire Disturbance in the Southern Appalachian Using a Time Series Analysis of Landsat Imagery. Remote Sensing, 2020, 12, 2412.	1.8	7
33	With warming, spring streamflow peaks are more coupled with vegetation greenâ€up than snowmelt in the northeastern United States. Hydrological Processes, 2022, 36, .	1.1	6
34	Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds. Korean Journal of Agricultural and Forest Meteorology, 2007, 9, 247-259.	0.2	5