List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochimica Acta, 2008, 53, 2809-2817.	5.2	171
2	Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. Journal of Alloys and Compounds, 2013, 572, 97-106.	5.5	164
3	Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochimica Acta, 2008, 53, 4867-4874.	5.2	145
4	Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2525-2538.	2.2	129
5	Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochimica Acta, 2010, 55, 759-770.	5.2	125
6	The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 402, 22-32.	5.6	123
7	Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 103-111.	5.6	119
8	The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al–4.5wt.% Cu alloy. Electrochimica Acta, 2007, 52, 3265-3273.	5.2	112
9	The effect of the dendritic microstructure on the corrosion resistance of Zn–Al alloys. Journal of Alloys and Compounds, 2005, 397, 179-191.	5.5	104
10	Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Materials Characterization, 2010, 61, 212-220.	4.4	103
11	Mechanical properties as a function of microstructure and solidification thermal variables of Al–Si castings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 421, 245-253.	5.6	101
12	Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy. Electrochimica Acta, 2011, 56, 8891-8899.	5.2	87
13	Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al–Si alloys. Materials Letters, 2008, 62, 365-369.	2.6	83
14	Effects of eutectic modification and T4 heat treatment on mechanical properties and corrosion resistance of an Al–9wt%Si casting alloy. Materials Chemistry and Physics, 2007, 106, 343-349.	4.0	82
15	Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. Journal of Alloys and Compounds, 2013, 562, 194-204.	5.5	78
16	Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 804-812.	1.5	75
17	Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Materials & Design, 2011, 32, 3832-3837.	5.1	70
18	EIS and potentiodynamic polarization studies on immiscible monotectic Al–In alloys. Electrochimica Acta, 2013, 102, 436-445.	5.2	69

#	Article	IF	CITATIONS
19	The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Materials & Design, 2011, 32, 3008-3012.	5.1	66
20	Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al–10wt% Sn and Al–20wt% Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 420, 179-186.	5.6	61
21	Electrochemical corrosion characterization of Al–Ni alloys in a dilute sodium chloride solution. Electrochimica Acta, 2010, 55, 4078-4085.	5.2	60
22	Macrosegregation and microstructure dendritic array affecting the electrochemical behaviour of ternary Al–Cu–Si alloys. Electrochimica Acta, 2011, 56, 8412-8421.	5.2	60
23	The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb–Sb alloys for lead acid battery grids. Journal of Power Sources, 2008, 175, 595-603.	7.8	59
24	Electrochemical behavior of a lead-free SnAg solder alloy affected by the microstructure array. Materials & Design, 2011, 32, 4763-4772.	5.1	58
25	Electrochemical behavior of a lead-free Sn–Cu solder alloy in NaCl solution. Corrosion Science, 2014, 80, 71-81.	6.6	58
26	The role of Cu-based intermetallics on the pitting corrosion behavior of Sn–Cu, Ti–Cu and Al–Cu alloys. Electrochimica Acta, 2012, 77, 189-197.	5.2	57
27	The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al-Si hypoeutectic alloys. Journal of Solid State Electrochemistry, 2007, 11, 1421-1427.	2.5	56
28	Wetting Behavior and Mechanical Properties of Sn-Zn and Sn-Pb Solder Alloys. Journal of Electronic Materials, 2009, 38, 2405-2414.	2.2	54
29	The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber. Construction and Building Materials, 2017, 151, 534-545.	7.2	54
30	Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Construction and Building Materials, 2015, 95, 525-536.	7.2	52
31	Effects of cell size and macrosegregation on the corrosion behavior of a dilute Pb–Sb alloy. Journal of Power Sources, 2006, 162, 696-705.	7.8	51
32	Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing. Materials & Design, 2007, 28, 2425-2430.	5.1	51
33	Dendritic solidification microstructure affecting mechanical and corrosion properties of a Zn4Al alloy. Journal of Materials Science, 2005, 40, 4493-4499.	3.7	50
34	Electrochemical corrosion parameters of as-cast Al–Fe alloys in a NaCl solution. Corrosion Science, 2010, 52, 2979-2993.	6.6	47
35	Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Materials & Design, 2010, 31, 4485-4489.	5.1	45
36	The effects of Zn segregation and microstructure length scale on the corrosion behavior of a directionally solidified Mg-25Âwt.%Zn alloy. Journal of Alloys and Compounds, 2017, 723, 649-660.	5.5	43

#	Article	IF	CITATIONS
37	Microstructure and electrochemical corrosion behavior of a Pb–1wt%Sn alloy for lead-acid battery components. Journal of Power Sources, 2009, 192, 724-729.	7.8	41
38	Globular-to-needle Zn-rich phase transition during transient solidification of a eutectic Sn–9%Zn solder alloy. Materials Letters, 2009, 63, 1314-1316.	2.6	39
39	Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al–9wt%Si casting alloy. Applied Surface Science, 2008, 254, 2763-2770.	6.1	38
40	Mechanical and corrosion resistances of a Sn–0.7wt.%Cu lead-free solder alloy. Microelectronics Reliability, 2014, 54, 1392-1400.	1.7	36
41	Evaluation of efficiency factor of a self-compacting lightweight concrete with rubber and expanded clay contents. Construction and Building Materials, 2020, 257, 119573.	7.2	35
42	Dendritic Microstructure Affecting Mechanical Properties and Corrosion Resistance of an Al-9 wt% Si Alloy. Materials and Manufacturing Processes, 2007, 22, 328-332.	4.7	33
43	The interrelation between mechanical properties, corrosion resistance and microstructure of Pb–Sn casting alloys for lead-acid battery components. Journal of Power Sources, 2010, 195, 621-630.	7.8	32
44	Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array. Electrochimica Acta, 2012, 76, 218-228.	5.2	32
45	Electrochemical behavior and compressive strength of Al-Cu/xCu composites in NaCl solution. Journal of Solid State Electrochemistry, 2021, 25, 1303-1317.	2.5	32
46	Electrochemical corrosion of Pb–1wt% Sn and Pb–2.5wt% Sn alloys for lead-acid battery applications. Journal of Power Sources, 2009, 194, 1120-1127.	7.8	30
47	The effects of Ag content and dendrite spacing on the electrochemical behavior ofÂPb–Ag alloys for Pb-acid battery components. Journal of Power Sources, 2013, 238, 324-335.	7.8	29
48	EIS Investigation of the Corrosion Behavior of Steel Bars Embedded into Modified Concretes with Eggshell Contents. Metals, 2022, 12, 417.	2.3	28
49	EIS parameters and cell spacings of an Al–Bi alloy in NaCl solution. Electrochimica Acta, 2013, 108, 781-787.	5.2	27
50	Microstructural array and solute content affecting electrochemical behavior of Sn Ag and Sn Bi alloys compared with a traditional Sn Pb alloy. Materials Chemistry and Physics, 2019, 223, 410-425.	4.0	27
51	Corrosion behavior of hypoeutectic Al-Cu alloys in H2SO4 and NaCl solutions. Acta Metallurgica Sinica (English Letters), 2009, 22, 241-246.	2.9	26
52	The Holes of Zn Phosphate and Hot Dip Galvanizing on Electrochemical Behaviors of Multi-Coatings on Steel Substrates. Metals, 2022, 12, 863.	2.3	26
53	The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al–Cu alloys immersed in H2SO4. Journal of Alloys and Compounds, 2007, 443, 87-93.	5.5	25
54	Effects of the longitudinal and transversal structural grain morphologies upon the corrosion resistance of zinc and aluminium specimens. Revista De Metalurgia, 2005, 41, 176-180.	0.5	25

#	Article	IF	CITATIONS
55	Comparison of electrochemical performance of as-cast Pb–1wt.% Sn and Pb–1wt.% Sb alloys for lead-acid battery components. Journal of Power Sources, 2010, 195, 1726-1730.	7.8	24
56	Distinct Alp/Sip composites affecting its densification and mechanical behavior. Journal of Alloys and Compounds, 2018, 757, 434-447.	5.5	24
57	Cell/dendrite transition and electrochemical corrosion of Pb–Sb alloys for lead-acid battery applications. Journal of Power Sources, 2011, 196, 6567-6572.	7.8	21
58	Fresh and Hardened States of Distinctive Self-Compacting Concrete with Marble- and Phyllite-Powder Aggregate Contents. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	20
59	Hot corrosion resistance of a Pb–Sb alloy for lead acid battery grids. Journal of Power Sources, 2008, 185, 1471-1477.	7.8	19
60	Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders. Electrochimica Acta, 2012, 69, 371-378.	5.2	19
61	Electrochemical corrosion behaviour of a Tiâ€IF steel and a SAE 1020 steel in a 0.5 M NaCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 407-411.	1.5	18
62	The effects of tertiary dendrite arm spacing and segregation on the corrosion behavior of a Pb–Sb alloy for lead-acid battery components. Journal of Power Sources, 2012, 207, 183-190.	7.8	18
63	Morphology and size effects on densification and mechanical behavior of sintered powders from Al-Si and Al-Cu casting alloys. Journal of Alloys and Compounds, 2019, 786, 717-732.	5.5	18
64	Electrochemical behaviour of a Pb–Sb alloy in 0.5M NaCl and 0.5M H2SO4 solutions. Materials & Design, 2012, 34, 660-665.	5.1	15
65	Electrochemical and Mechanical Behavior of Lead-Silver and Lead-Bismuth Casting Alloys for Lead-Acid Battery Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4255-4267.	2.2	15
66	Electrolyte features and microstructure affecting the electrochemical performance of a Pb–Sb alloy for lead-acid battery components. Electrochimica Acta, 2011, 56, 8457-8462.	5.2	14
67	Compaction pressure and Si content effects on compressive strengths of Al/Si/Cu alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 770, 138547.	5.6	14
68	The Role of Macrostructural and Microstructural Morphologies on the Corrosion Resistance of Zn and a Zn-4% Al Alloy. Materials and Manufacturing Processes, 2007, 22, 341-345.	4.7	13
69	The influences of macrosegregation, intermetallic particles, and dendritic spacing on the electrochemical behavior of hypoeutectic Al u alloys. Microscopy Research and Technique, 2007, 70, 928-937.	2.2	13
70	Corrosion Performance Based on the Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution. Journal of Materials Engineering and Performance, 2014, 23, 333-341.	2.5	13
71	Immersion Corrosion of Sn-Ag and Sn-Bi Alloys as Successors to Sn-Pb Alloy with Electronic and Jewelry Applications. Corrosion, 2016, 72, 1064-1080.	1.1	11
72	Interrelation of wettability–microstructure–tensile strength of lead-free Sn–Ag and Sn–Bi solder alloys. Science and Technology of Welding and Joining, 2016, 21, 429-437.	3.1	11

#	Article	IF	CITATIONS
73	Performance of New Pb-Bi Alloys for Pb-Acid Battery Applications: EIS and Polarization Study. Journal of Materials Engineering and Performance, 2016, 25, 2211-2221.	2.5	11
74	Experimental analysis of corrosion resistance on columnar to equiaxed transition region of as cast structures of Al–Cu alloys. Materials Science and Technology, 2008, 24, 1433-1437.	1.6	10
75	Effect of sintering time on corrosion behavior of an Ag/Al/Nb/Ti/Zn alloy system. Journal of Alloys and Compounds, 2020, 834, 155039.	5.5	10
76	Corrosion behavior of an Al-Si casting and a sintered Al/Si composite immersed into biodiesel and blends. Fuel Processing Technology, 2020, 202, 106360.	7.2	9
77	Microstructural and Hardness Evaluations of a Centrifuged Sn-22Pb Casting Alloy Compared with a Lead-Free SnAg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1880-1892.	2.2	8
78	Alternative method to improve the ethyl valerate yield using an immobilised <i>Burkholderia cepacia</i> lipase. Journal of Microencapsulation, 2019, 36, 327-337.	2.8	8
79	Different immersion periods and aqueous solutions effects upon the corrosion resistance of zinc and aluminium specimens. Revista De Metalurgia, 2005, 41, 160-164.	0.5	8
80	Electrochemical Behavior of an Al-Fe-Ni Alloy Affected by Nano-Sized Intermetallic Particles. Corrosion, 2015, 71, 510-522.	1.1	6
81	Economic Method for Extraction/Purification of a Burkholderia cepacia Lipase with Potential Biotechnology Application. Applied Biochemistry and Biotechnology, 2019, 189, 1108-1126.	2.9	5
82	Silicon Content Affecting Corrosion Behavior of Alp/Sip Composites in a Biodiesel Blend. Corrosion, 2020, 76, 1109-1121.	1.1	5
83	Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Studies Affected by the Microstructure Array of a Monotectic Al-Pb Alloy in a NaCl Solution. Corrosion, 2014, 70, 1031-1042.	1.1	4
84	Mechanical performance and microstructure array of as-cast lead–silver and lead–bismuth alloys. Journal of Power Sources, 2014, 271, 124-133.	7.8	4
85	Superconducting evidence of a processed Nb 2 GeC compound under a microwave heating. Materials Chemistry and Physics, 2017, 194, 219-223.	4.0	4
86	Designing a Microstructural Array Associated with Hardness of Dual-phase Cu-Zn Alloy Using Investment Casting. Materials Research, 2018, 21, .	1.3	4
87	Study of three distinct self-compacting concretes containing marble/granite powder and hooked-end steel fiber contents. Journal of Composite Materials, 2021, 55, 2823-2838.	2.4	4
88	Distinct heat treatments and powder size ratios affecting mechanical responses of Al/Si/Cu composites. Journal of Composite Materials, 2021, 55, 3589-3605.	2.4	4
89	Laser surface treatment of plasma-sprayed yttria-stabilized zirconia coatings. Revista De Metalurgia, 2005, 41, 154-159.	0.5	4
90	Corrosion Behavior of CW6MC Nickel Cast Alloy (Inconel 625) Welded by Shielded Metal Arc Welding. Metals, 2021, 11, 1286.	2.3	3

#	Article	IF	CITATIONS
91	A influência da macrosegregação e da variação dos espaçamentos dendrÃticos na resistência Ã corrosão da liga Al-4,5%Cu. Revista Materia, 2008, 13, 542-552.	0.2	2
92	Physical adsorption used to the immobilization of Burkholderia cepacia lipase into powder polymeric supports. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3071-3081.	3.6	2
93	Efeitos da agitação mecânica e de adição de refinador de grão na microestrutura e propriedade mecânica de fundidos da liga Al-Sn. Revista Materia, 2009, 14, 906-917.	0.2	1
94	Woodard–Cody anomalous resistivity in a Nb5Ge3C0.3 superconductor compound. Physica B: Condensed Matter, 2016, 494, 82-85.	2.7	1
95	Designing sintering time for a TiSiC compound: a microwave and conventional comparison. International Journal of Advanced Manufacturing Technology, 2019, 104, 1561-1570.	3.0	1
96	Microstructural characterization and mechanical behavior of an AgAlNbTiZn complex composition alloy produced using powder metallurgy (P/M). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 305-315.	5.6	1
97	CORRELAÇÃO ENTRE MICROESTRUTURA, RESISTÊNCIAS MECÃ,NICA E À CORROSÃO DA LIGA DE SOLDAGE LIVRE DE CHUMBO Sn-0,7%Cu*. Tecnologia Em Metalurgia, Materiais E Mineracao, 2014, 11, 277-286.	EM 0.2	1
98	Alternative Liquid-Assisted Sintering of Al/Cu Composites Using Selected Powders of As-Cast Al-Zn Alloy. Metals, 2022, 12, 962.	2.3	1
99	Improvement on the melt-texturing performance of a (Y,Ta)0.5BaO3–YBa2Cu3Oy composite with superconductor applications. Ceramics International, 2015, 41, 843-848.	4.8	0