Temirlan Arslanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence of pressure-induced metamagnetic-like state in Mn-doped CdGeAs ₂ chalcopyrite. Applied Physics Letters, 2013, 103, 192403.	3.3	14
2	Anomalies of magnetic properties and magnetovolume effect in Cd1â^'xMnxGeAs2 at hydrostatic pressure. Applied Physics Letters, 2012, 100, 202403.	3.3	10
3	Changes in the magnetization hysteresis direction and structure-driven magnetoresistance of a chalcopyrite-based magnetic semiconductor. Journal Physics D: Applied Physics, 2016, 49, 125007.	2.8	10
4	Baric and temperature dependences of kinetic coefficients in p-Cd0.7Mn0.3GeAs2at atmospheric and high pressures. Physica Status Solidi (B): Basic Research, 2009, 246, 655-657.	1.5	7
5	Pressure-induced metamagnetic transition in the Cd0.7Mn0.3GeAs2 ferromagnetic semiconductor. JETP Letters, 2010, 91, 478-480.	1.4	7
6	High-pressure resistance reversibility of polymer composites based on multiwalled carbon nanotubes. Applied Physics Letters, 2014, 105, 203103.	3.3	7
7	Pressure effect on the anomalies of the electric and magnetic properties of diluted magnetic semiconductor CdGeAs ₂ doped with Mn. Physica Status Solidi (B): Basic Research, 2013, 250, 736-740.	1.5	6
8	Low-field-enhanced unusual hysteresis produced by metamagnetism of the MnP clusters in the insulating <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CdGe</mml:mi><mml:msub><mm mathvariant="normal">P<mml:mn>2</mml:mn></mm></mml:msub></mml:mrow></mml:math>	l:nai2	6
9	Negative magnetoresistance in Mn-doped p-CdSb under pressure. Journal of Alloys and Compounds, 2017, 699, 1104-1107.	5.5	5
10	Preparation and dielectric properties of La doped NBCCTO ceramics. Journal of Electroceramics, 2022, 48, 117-126.	2.0	4
11	Pressure, temperature, and magnetic-field effects on the transport properties of Cd0.7Mn0.3GeAs2. Inorganic Materials, 2010, 46, 571-573.	0.8	3
12	Electrical and magnetic properties of the diluted magnetic semiconductors Cd1 â^' x Mn x GeP2 and Cd1 â^' x Mn x GeAs2 at high pressures. Inorganic Materials, 2012, 48, 872-876.	0.8	3
13	Effect of high pressure on the electrical resistivity and the volume change in ferromagnetic semiconductors AllBIVC 2 V :Mn. Russian Journal of Inorganic Chemistry, 2015, 60, 994-998.	1.3	3
14	Transport and magnetic properties of a Zn0.1Cd0.9GeAs2 + 10 wt % MnAs composite with magnetic clusters at high pressure. Physics of the Solid State, 2017, 59, 483-486.	0.6	3
15	High-pressure magnetic phase transition and galvanomagnetic effects in the high-temperature ferromagnet p-Cd0.7Mn0.3GeAs2. Inorganic Materials, 2010, 46, 919-923.	0.8	2
16	Magnetic properties of dilute magnetic semiconductor Cd0.82Mn0.18GeAs2 under high pressures. Russian Journal of Inorganic Chemistry, 2011, 56, 924-927.	1.3	2
17	Structure-Dependent Magnetoresistance in the Zn0.1Cd0.9GeAs2 + MnAs Hybrid Nanocomposite. JETP Letters, 2018, 107, 612-617.	1.4	2
18	High-pressure induced magnetoresistance in p-InAs:Mn and p-CdGeAs2:Mn. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 992-994.	0.6	1

#	Article	IF	CITATIONS
19	Electron and magnetic transport in the diluted magnetic semiconductor CdGeAs ₂ <Mn>at high pressures. High Pressure Research, 2011, 31, 75-79.	1.2	1

High-pressure volume magnetostriction in the diluted magnetic semiconductor Cd1 â⁻ x Mn x GeAs2 (x) Tj ETQq0 0.0 rgBT /Qverlock 10

21	Charge and magnetization transport in Cd0.81Mn0.19GeP2 dilute magnetic semiconductor under high pressures. Russian Journal of Inorganic Chemistry, 2012, 57, 987-990.	1.3	1
22	Electrophysical properties of composite films based on multiwalled carbon nanotubes under hydrostatic pressure. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 755-758.	0.6	1
23	Stabilization of Ferromagnetism in BiFeO3:Ho at Hydrostatic Pressure. JETP Letters, 2018, 107, 477-482.	1.4	1
24	Semiconductor–Metal Transition in Magnetic Semiconductor Compounds at High Pressure. Journal of Experimental and Theoretical Physics, 2020, 130, 94-100.	0.9	1
25	Preparation and properties of situ-sintered SiC ceramics aided by ZnO-Al2O3-CaO. Journal of Alloys and Compounds, 2022, 890, 161854.	5.5	1
26	Large pressure-induced magnetoresistance in a hybrid ferromagnet-semiconductor system: Effect of matrix modification on the spin-dependent scattering. Journal of Applied Physics, 2020, 128, 213903.	2.5	1
27	Pressure-induced magnetic transformations in Cd3As2+MnAs hybrid composite. Applied Physics Letters, 2022, 120, .	3.3	1
28	About deep impurity centers in InAs. Physica Status Solidi (B): Basic Research, 2009, 246, 586-588.	1.5	0
29	The high-pressure-induced spin-reorientation transition in a ferromagnetic semiconductor Cd0.7Mn0.3GeAs2. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1107-1108.	0.6	0
30	Magnetic properties of oriented p-Cd0.947Mn0.053GeAs2 single crystals at pressures of up to 7 GPa. Inorganic Materials, 2011, 47, 1295-1297.	0.8	0
31	Hall effect in a magnetogranulated structure of a semiconductor-ferromagnetic system at high pressures. Inorganic Materials, 2014, 50, 647-650.	0.8	0
32	Resistivity and bulk compressibility of manganese-doped ZnGeAs2 at hydrostatic pressures of up to 9 GPa. Inorganic Materials, 2015, 51, 299-301.	0.8	0
33	Anomalous hall effect in a diluted p-InAsã€^Mn〉 magnetic semiconductor. Journal of Experimental and Theoretical Physics, 2017, 124, 493-495.	0.9	0
34	High-Pressure Magnetic and Transport Properties of Zn0.1Cd0.9GeAs2 + n wt % MnAs (n = 10 or 15) Nanocomposites. Inorganic Materials, 2019, 55, 96-100.	0.8	0
35	Low energy band gap state in compressed needlelike structure of CdSb:Ni. Applied Physics Letters, 2019, 115, 252101.	3.3	0
36	From ferromagnetic to helical order with a discussion of the low-temperature antiferromagnetism in composite Cd1–xMnxGeP2+MnP semiconductors. Physical Review B, 2021, 104, .	3.2	0

#	Article	IF	CITATIONS
37	The effect of high pressure on the electrical and transport properties of the InSb-MnSb magnetic eutectic composition. AIP Advances, 2022, 12, 035330.	1.3	0
38	Effect of Hydrostatic Pressure on the Resistivity of La0.8Ag0.1MnO3 Ceramic near TC. JETP Letters, 2022, 115, 190-195.	1.4	0
39	Magnetization of Cd3As2–30 mol % MnAs Composite at High Pressure. Technical Physics, 0, , .	0.7	0