
Eduardo A Ceccarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/371432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural features of the plant Nâ€recognin ClpS1 and sequence determinants in its targets that govern substrate selection. FEBS Letters, 2021, 595, 1525-1541.	2.8	8
2	A new catalytic mechanism of bacterial ferredoxinâ€NADP + reductases due to a particular NADP + binding mode. Protein Science, 2021, 30, 2106-2120.	7.6	7
3	From the notebook to recombinant protein production in Escherichia coli: Design of expression vectors and gene cloning. Methods in Enzymology, 2021, 659, 19-35.	1.0	1
4	Starting a new recombinant protein production project in Escherichia coli. Methods in Enzymology, 2021, 659, 3-18.	1.0	3
5	Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana. Plant Molecular Biology, 2020, 104, 451-465.	3.9	10
6	A novel Xanthomonas citri subsp. citri NADPH quinone reductase involved in salt stress response and virulence. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129514.	2.4	4
7	A novel method for removing contaminant Hsp70 molecular chaperones from recombinant proteins. Protein Science, 2019, 28, 800-807.	7.6	6
8	New tools for recombinant protein production in <i>Escherichia coli</i> : A 5â€year update. Protein Science, 2019, 28, 1412-1422.	7.6	227
9	A bacterial 2[4Fe 4S] ferredoxin as redox partner of the plastidic-type ferredoxin-NADP+ reductase from Leptospira interrogans. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 651-660.	2.4	4
10	A Gatekeeper Residue of ClpS1 from Arabidopsis thaliana Chloroplasts Determines its Affinity Towards Substrates of the Bacterial N-End Rule. Plant and Cell Physiology, 2018, 59, 624-636.	3.1	14
11	Proteome variation of the rat liver after static cold storage assayed in an ex vivo model. Cryobiology, 2018, 85, 47-55.	0.7	3
12	Structural and mutational analyses of the Leptospira interrogans virulence-related heme oxygenase provide insights into its catalytic mechanism. PLoS ONE, 2017, 12, e0182535.	2.5	5
13	TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells. PLoS ONE, 2017, 12, e0184617.	2.5	4
14	Khellin and Visnagin, Furanochromones from <i>Ammi visnaga</i> (L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 9475-9487.	5.2	43
15	Recombinant protein expression in microbial systems. Frontiers in Microbiology, 2014, 5, 341.	3.5	57
16	Heme-iron utilization by Leptospira interrogans requires a heme oxygenase and a plastidic-type ferredoxin-NADP+ reductase. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3208-3217.	2.4	9
17	Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones. BMC Plant Biology, 2014, 14, 228.	3.6	9
18	Dynamics of the active site architecture in plant-type ferredoxin-NADP+ reductases catalytic complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1730-1738.	1.0	12

#	Article	IF	CITATIONS
19	Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 2014, 5, 172.	3.5	1,650
20	Crystal Structure of the FAD-Containing Ferredoxin-NADP ^{+} Reductase from the Plant Pathogen <i>Xanthomonas axonopodis</i> pv. citri. BioMed Research International, 2013, 2013, 1-6.	1.9	6
21	Redox Proteins as Targets for Drugs Development Against Pathogens. Current Pharmaceutical Design, 2013, 19, 2594-2605.	1.9	6
22	Toward a unified model of the action of CLP/HSP100 chaperones in chloroplasts. Plant Signaling and Behavior, 2012, 7, 672-674.	2.4	4
23	Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein. BMC Plant Biology, 2012, 12, 57.	3.6	22
24	Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin–NADP+ reductases. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1063-1071.	1.0	11
25	15 Ferredoxin-NADP ⁺ reductases. , 2012, , 313-336.		1
26	Swapping FAD Binding Motifs between Plastidic and Bacterial Ferredoxin-NADP(H) Reductases. Biochemistry, 2011, 50, 2111-2122.	2.5	15
27	Structural-Functional Characterization and Physiological Significance of Ferredoxin-NADP+ Reductase from Xanthomonas axonopodis pv. citri. PLoS ONE, 2011, 6, e27124.	2.5	13
28	Insights into the CLP/HSP100 Chaperone System from Chloroplasts of Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 29671-29680.	3.4	40
29	A Highly Stable Plastidic-Type Ferredoxin-NADP(H) Reductase in the Pathogenic Bacterium Leptospira interrogans. PLoS ONE, 2011, 6, e26736.	2.5	13
30	Usefulness of Kinetic Enzyme Parameters in Biotechnological Practice. Biotechnology and Genetic Engineering Reviews, 2010, 27, 367-382.	6.2	26
31	Induced Fit and Equilibrium Dynamics for High Catalytic Efficiency in Ferredoxin-NADP(H) Reductases. Biochemistry, 2009, 48, 5760-5768.	2.5	30
32	Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories, 2009, 8, 41.	4.0	135
33	Modulation of the enzymatic efficiency of ferredoxinâ€NADP(H) reductase by the amino acid volume around the catalytic site. FEBS Journal, 2008, 275, 1350-1366.	4.7	17
34	Efficiency function for comparing catalytic competence. Trends in Biotechnology, 2008, 26, 117-118.	9.3	25
35	Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+. BMC Structural Biology, 2007, 7, 69.	2.3	20
36	Reduction of the Pea Ferredoxin-NADP(H) Reductase Catalytic Efficiency by the Structuring of a Carboxyl-Terminal Artificial Metal Binding Siteâ€. Biochemistry, 2006, 45, 13899-13909.	2.5	10

#	Article	IF	CITATIONS
37	Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase fromLeptospira interrogans. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 662-664.	0.7	3
38	Chloroplast Hsp70s are not involved in the import of ferredoxin-NADP+reductase precursor. Physiologia Plantarum, 2006, 128, 618-632.	5.2	7
39	Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide. FEBS Journal, 2004, 271, 4582-4593.	0.2	10
40	Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 155-165.	2.3	133
41	Role of the C-Terminal Tyrosine of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase in the Electron Transfer Processes with Its Protein Partners Ferredoxin and Flavodoxinâ€. Biochemistry, 2004, 43, 6127-6137.	2.5	72
42	Novel escherichia coli strain allows efficient recombinant protein production using lactose as inducer. Biotechnology and Bioengineering, 2003, 82, 809-817.	3.3	32
43	Open questions in ferredoxin-NADP+ reductase catalytic mechanism. FEBS Journal, 2003, 270, 1900-1915.	0.2	237
44	Precursors with Altered Affinity for Hsp70 in Their Transit Peptides Are Efficiently Imported into Chloroplasts. Journal of Biological Chemistry, 2003, 278, 46473-46481.	3.4	23
45	High recovery of prochymosin from inclusion bodies using controlled air oxidation. Protein Expression and Purification, 2002, 25, 248-255.	1.3	26
46	Removal of DnaK contamination during fusion protein purifications. Protein Expression and Purification, 2002, 25, 503-507.	1.3	64
47	The import of ferredoxin-NADP+ reductase precursor into chloroplasts is modulated by the region between the transit peptide and the mature core of the protein. FEBS Journal, 2002, 269, 5431-5439.	0.2	22
48	Involvement of the Flavin si-Face Tyrosine on the Structure and Function of Ferredoxin-NADP+ Reductases. Journal of Biological Chemistry, 2001, 276, 44419-44426.	3.4	15
49	Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. FEBS Journal, 2000, 267, 6239-6248.	0.2	80
50	Competition between C-terminal Tyrosine and Nicotinamide Modulates Pyridine Nucleotide Affinity and Specificity in Plant Ferredoxin-NADP+ Reductase. Journal of Biological Chemistry, 2000, 275, 10472-10476.	3.4	81
51	A productive NADP+ binding mode of ferredoxin-NADP + reductase revealed by protein engineering and crystallographic studies. Nature Structural Biology, 1999, 6, 847-853.	9.7	181
52	Metallo-β-lactamases: does it take two to tango?. Coordination Chemistry Reviews, 1999, 190-192, 519-535.	18.8	61
53	Cooperation of the DnaK and GroE chaperone systems in the folding pathway of plant ferredoxin-NADP+ reductase expressed in Escherichia coli. FEBS Journal, 1998, 251, 724-728.	0.2	16
54	A fully active FAD-containing precursor remains folded up to its translocation across the chloroplast membranes. FEBS Journal, 1998, 253, 132-138.	0.2	8

Eduardo A Ceccarelli

#	Article	IF	CITATIONS
55	Spectroscopic Characterization of a Binuclear Metal Site in Bacillus cereus \hat{I}^2 -Lactamase II. Biochemistry, 1998, 37, 10173-10180.	2.5	120
56	Plantâ€ŧype ferredoxinâ€NADP ⁺ reductases: a basal structural framework and a multiplicity of functions. FASEB Journal, 1997, 11, 133-140.	0.5	151
57	Conformational Requirements of a Recombinant Ferredoxin-NADP+ Reductase Precursor for Efficient Binding to and Import into Isolated Chloroplasts. FEBS Journal, 1996, 238, 192-197.	0.2	12
58	The Precursor of Pea Ferredoxin-NADP+ Reductase Synthesized in Escherichia coli Contains Bound FAD and Is Transported into Chloroplasts. Journal of Biological Chemistry, 1995, 270, 19930-19935.	3.4	17
59	Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Biochemistry, 1995, 34, 12842-12848.	2.5	31
60	Expression, assembly and secretion of a fully active plant ferredoxin-NADP+ reductase by Saccharomyces cerevisiae. FEBS Journal, 1994, 225, 677-685.	0.2	3
61	One-Step Purification of Plant Ferredoxin-NADP+ Oxidoreductase Expressed in Escherichia coli as Fusion with Glutathione S-Transferase. Protein Expression and Purification, 1993, 4, 539-546.	1.3	18
62	Recovery of agarose for electrophoresis of DNA fragments. Trends in Genetics, 1990, 6, 72.	6.7	1
63	Selectivity of modification when latent and activated forms of the chloroplast F1-ATPase are inactivated by 7-chloro-4-nitrobenzofurazan. Archives of Biochemistry and Biophysics, 1989, 272, 400-411.	3.0	11
64	Inhibition of the bovine-heart mitochondrial F1-ATPase by cationic dyes and amphipathic peptides. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 975, 377-383.	1.0	62
65	Immunological studies of the binding protein for chloroplast ferredoxin-NADP+ reductase. Archives of Biochemistry and Biophysics, 1987, 253, 56-61.	3.0	17
66	Trimeric structure and other properties of the chloroplast reductase binding protein. FEBS Letters, 1985, 190, 165-168.	2.8	23
67	A fast and sensitive micromethod for the manual sequencing of peptides using O-phthalaldehyde as derivatizing reagent. Journal of Proteomics, 1984, 10, 49-54.	2.4	5
68	Preparative purification of the subunits of chloroplast and Rhodospirillum rubrum coupling factors by flat-bed electrofocusing in granulated gels. Journal of Proteomics, 1984, 10, 103-109.	2.4	1
69	Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase. Archives of Biochemistry and Biophysics, 1983, 224, 382-388.	3.0	14