Mikko Tikkanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714193/publications.pdf

Version: 2024-02-01

43 papers 4,016 citations

32 h-index 243625 44 g-index

47 all docs

47 docs citations

47 times ranked

2946 citing authors

#	Article	IF	CITATIONS
1	Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nature Plants, 2021, 7, 998-1009.	9.3	88
2	Beyond APAR and NPQ: Factors Coupling and Decoupling SIF and GPP Across Scales., 2021,,.		0
3	Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce () Tj ETQq1 1 0 States of America, 2020, 117, 17499-17509.	0.784314 r 7.1	rgBT /Overlock 32
4	PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148154.	1.0	38
5	Photoinhibition of Photosystem I Provides Oxidative Protection During Imbalanced Photosynthetic Electron Transport in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 916.	3.6	53
6	The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. Journal of Experimental Botany, 2019, 70, 3211-3225.	4.8	21
7	Consequences of photosystemâ€i damage and repair on photosynthesis and carbon use in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 97, 1061-1072.	5 . 7	43
8	Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. Photosynthesis Research, 2018, 137, 129-140.	2.9	27
9	Phosphorylationâ€induced lateral rearrangements of thylakoid protein complexes upon light acclimation. Plant Direct, 2018, 2, e00039.	1.9	14
10	Switching off photoprotection of photosystem I–Âa novel tool for gradual PSI photoinhibition. Physiologia Plantarum, 2018, 162, 156-161.	5.2	35
11	FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors. Frontiers in Plant Science, 2018, 9, 410.	3.6	18
12	Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1067-1074.	1.0	19
13	Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions - From biophysical measurements to molecular mechanisms. Plant Physiology and Biochemistry, 2017, 112, 290-301.	5.8	29
14	Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. Plant Journal, 2017, 92, 951-962.	5.7	42
15	Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160390.	4.0	48
16	The Low Molecular Weight Protein Psal Stabilizes the Light-Harvesting Complex II Docking Site of Photosystem I. Plant Physiology, 2016, 172, 450-463.	4.8	12
17	Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nature Plants, 2016, 2, 16035.	9.3	133
18	Ultraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition And Accelerates The Recovery Of CO2 Assimilation In Cucumber (Cucumis sativus L.) Leaves. Scientific Reports, 2016, 6, 34455.	3.3	24

#	Article	IF	CITATIONS
19	Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Frontiers in Plant Science, 2015, 6, 521.	3.6	112
20	Light acclimation involves dynamic reâ€organization of the pigment–protein megacomplexes in nonâ€appressed thylakoid domains. Plant Journal, 2015, 84, 360-373.	5.7	66
21	Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light. Plant Physiology, 2015, 168, 721-734.	4.8	89
22	Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery â€" including both photosystems II and I. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 607-619.	1.0	108
23	Photosynthetic light reactions: integral to chloroplast retrograde signalling. Current Opinion in Plant Biology, 2015, 27, 180-191.	7.1	77
24	Photoprotection of photosystems in fluctuating light intensities. Journal of Experimental Botany, 2015, 66, 2427-2436.	4.8	171
25	Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Science, 2014, 19, 10-17.	8.8	203
26	Low pHâ€induced regulation of excitation energy between the two photosystems. FEBS Letters, 2014, 588, 970-974.	2.8	24
27	Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130229.	4.0	34
28	Photosynthetic light reactions $\hat{a}\in$ An adjustable hub in basic production and plant immunity signaling. Plant Physiology and Biochemistry, 2014, 81, 128-134.	5.8	44
29	Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 151-155.	3 . 8	54
30	Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 210-215.	1.0	292
31	The Light-Harvesting Chlorophyll a/b Binding Proteins Lhcb1 and Lhcb2 Play Complementary Roles during State Transitions in Arabidopsis. Plant Cell, 2014, 26, 3646-3660.	6.6	236
32	PGR5 ensures photosynthetic control to safeguard photosystem I under fluctuating light conditions. Plant Signaling and Behavior, 2013, 8, e22741.	2.4	36
33	STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain. Frontiers in Plant Science, 2012, 3, 277.	3.6	42
34	Regulation of the photosynthetic apparatus under fluctuating growth light. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3486-3493.	4.0	138
35	Postâ€genomic insight into thylakoid membrane lateral heterogeneity and redox balance. FEBS Letters, 2012, 586, 2911-2916.	2.8	23
36	Steady-State Phosphorylation of Light-Harvesting Complex II Proteins Preserves Photosystem I under Fluctuating White Light Â. Plant Physiology, 2012, 160, 1896-1910.	4.8	160

3

#	Article	IF	CITATIONS
37	PROTON GRADIENT REGULATION5 Is Essential for Proper Acclimation of <i>Arabidopsis</i> I to Naturally and Artificially Fluctuating Light Conditions. Plant Cell, 2012, 24, 2934-2948.	6.6	435
38	Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 232-238.	1.0	178
39	Novel insights into plant light-harvesting complex II phosphorylation and â€̃state transitions'. Trends in Plant Science, 2011, 16, 126-131.	8.8	90
40	Thylakoid Protein Phosphorylation in Higher Plant Chloroplasts Optimizes Electron Transfer under Fluctuating Light Â. Plant Physiology, 2010, 152, 723-735.	4.8	235
41	Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 425-432.	1.0	93
42	Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1432-1437.	1.0	185
43	State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Molecular Biology, 2006, 62, 779-93.	3.9	88