Jin-Bao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714095/publications.pdf Version: 2024-02-01

Ιινι-Βλο Ζηλο

#	Article	IF	CITATIONS
1	High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Research, 2023, 16, 4880-4887.	5.8	24
2	A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Research, 2023, 16, 5080-5086.	5.8	20
3	Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. Journal of Energy Chemistry, 2022, 64, 395-403.	7.1	24
4	Layered Ag-graphene films synthesized by Gamma ray irradiation for stable lithium metal anodes in carbonate-based electrolytes. Journal of Energy Chemistry, 2022, 64, 354-363.	7.1	23
5	Oxygen vacancies on surface of the TiO2 fillers hinder Li+ conduction in PEO all-solid-state electrolyte. Ionics, 2022, 28, 85-97.	1.2	1
6	Distinct capacity fade modes of Nickel-rich/Graphite-SiOx power lithium ion battery. Journal of Energy Storage, 2022, 47, 103830.	3.9	7
7	Single-crystal structure helps enhance the thermal performance of Ni-rich layered cathode materials for lithium-ion batteries. Chemical Engineering Journal, 2022, 434, 134638.	6.6	32
8	In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials. Energy Storage Materials, 2022, 46, 90-99.	9.5	24
9	Molten salt synthesis of carbon-supported Pt–rare earth metal nanoalloy catalysts for oxygen reduction reaction. RSC Advances, 2022, 12, 4805-4812.	1.7	3
10	Single-Crystal Ni-Rich Layered LiNi _{0.9} Mn _{0.1} O ₂ Enables Superior Performance of Co-Free Cathodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4381-4390.	3.2	33
11	Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Materials, 2022, 49, 172-180.	9.5	77
12	Synchronous Manipulation of Ion and Electron Transfer in Wadsley–Roth Phase Tiâ€Nb Oxides for Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, e2104530.	5.6	26
13	Anion-Containing Solvation Structure Reconfiguration Enables Wide-Temperature Electrolyte for High-Energy-Density Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 19056-19066.	4.0	18
14	An Online Estimation Method of State of Health for Lithium-Ion Batteries Based on Constant Current Charging Curve. Journal of the Electrochemical Society, 2022, 169, 050514.	1.3	2
15	Silver Copper Oxide Nanowires by Electrodeposition for Stable Lithium Metal Anode in Carbonate-Based Electrolytes. ACS Sustainable Chemistry and Engineering, 2022, 10, 7196-7204.	3.2	7
16	Constructing Ion‧elective Coating Layer with Lithium Ion Conductor LLZO and Binder Liâ€Nafion for Separator Used in Lithium‧ulfur Batteries. ChemElectroChem, 2022, 9, .	1.7	8
17	New UV-initiated lithiated-interpenetrating network gel-polymer electrolytes for lithium-metal batteries. Journal of Power Sources, 2022, 541, 231681.	4.0	6
18	Modification of a Cu Mesh with Nanowires and Magnesiophilic Ag Sites to Induce Uniform Magnesium Deposition. ACS Applied Materials & amp; Interfaces, 2022, 14, 31148-31159.	4.0	8

JIN-BAO ZHAO

#	Article	IF	CITATIONS
19	From Mosaic-Type to Heterojunction-Type SEI Films on the Li Anode: Decoupling Chemical and Electrochemical Degradation of the Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 9232-9241.	3.2	4
20	Application of MXenes in lithium-sulfur batteries. Science China Technological Sciences, 2022, 65, 2259-2273.	2.0	8
21	Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte. Journal of Energy Chemistry, 2021, 54, 282-290.	7.1	16
22	Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. Journal of Energy Chemistry, 2021, 55, 129-135.	7.1	44
23	Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Materials, 2021, 35, 586-594.	9.5	127
24	A Rational Design for a High‧afety Lithiumâ€Ion Battery Assembled with a Heatproof–Fireproof Bifunctional Separator. Advanced Functional Materials, 2021, 31, 2008537.	7.8	48
25	A reinforced ceramic-coated separator by overall-covered modification of electron-insulated polypyrrole for the safe performance of lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 1884-1894.	3.2	14
26	Insight into thermal behavior mechanism of Li3VO4 anode for safety design of Li-Ion batteries. Journal of Alloys and Compounds, 2021, 856, 157363.	2.8	4
27	A novel solid electrolyte formed by NASICON-type Li ₃ Zr ₂ Si ₂ PO12 and poly(vinylidene fluoride) for solid state batteries. Functional Materials Letters, 2021, 14, 2140001.	0.7	6
28	Self-Standing N-Doped Carbonized Cellulose Fiber as a Dual-Functional Host for Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2326-2337.	3.2	12
29	Super-conductive plastic crystal-based materials as the interface layers for solid-state lithium metal batteries. Functional Materials Letters, 2021, 14, 2141003.	0.7	1
30	Synergistic Manipulation of Zn ²⁺ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF ₂ Matrix for Longâ€Lifespan and Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2021, 33, e2007388.	11.1	359
31	A Novel Impregnation-Reduction Method Combined with Galvanic Replacement for Fabricating Low Cost MEA with High Performance for PEM Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 034522.	1.3	2
32	Phenyl TrifluoroMethane sulfonate as a novel electrolyte additive for enhancing performance of LiNiO·6CoO·2MnO·2O2/Graphite cells working in wide temperature ranges. Journal of Power Sources, 2021, 487, 229416.	4.0	13
33	Ultralong-Lifespan Magnesium Batteries Enabled by the Synergetic Manipulation of Oxygen Vacancies and Electronic Conduction. ACS Applied Materials & amp; Interfaces, 2021, 13, 12049-12058.	4.0	11
34	Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors. Journal of Chemical Physics, 2021, 154, 094703.	1.2	49
35	Wadsley–Roth Crystallographic Shear Structure Niobiumâ€Based Oxides: Promising Anode Materials for Highâ€Safety Lithiumâ€Ion Batteries. Advanced Science, 2021, 8, e2004855.	5.6	70
36	Alleviating the Storage Instability of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials by Surface Modification with Poly(acrylic acid). ACS Sustainable Chemistry and Engineering, 2021, 9, 7466-7478.	3.2	20

Jin-Bao Zhao

#	Article	IF	CITATIONS
37	Facile Fabrication of Functionalized Separators for Lithium-Ion Batteries with Ionic Conduction Path Modifications via the Î ³ -Ray Co-irradiation Grafting Process. ACS Applied Materials & Interfaces, 2021, 13, 27663-27673.	4.0	12
38	The functional separator for lithium-ion batteries based on phosphonate modified nano-scale silica ceramic particles. Journal of Power Sources, 2021, 498, 229908.	4.0	21
39	Insight into the Redox Reaction Heterogeneity within Secondary Particles of Nickel-Rich Layered Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 27074-27084.	4.0	20
40	The apparent capacity decay by kinetic degradation of LiNi0.5Co0.2Mn0.3O2 during cycling under the high upper-limit charging potential. Journal of Power Sources, 2021, 496, 229856.	4.0	13
41	Insight into the Kinetic Degradation of Stored Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 10547-10556.	3.2	14
42	Enhancing Catalytic Conversion of Polysulfides by Hollow Bimetallic Oxide-Based Heterostructure Nanocages for Lithium-Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 10392-10402.	3.2	15
43	A Multifunctional Dualâ€Salt Localized Highâ€Concentration Electrolyte for Fast Dynamic Highâ€Voltage Lithium Battery in Wide Temperature Range. Advanced Energy Materials, 2021, 11, 2101775.	10.2	97
44	Highly stable and robust bi-electrodes interfacial protective films for practical lithium metal batteries. Journal of Power Sources, 2021, 509, 230370.	4.0	11
45	Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2021, 158, 110229.	1.9	11
46	Ten Thousand-Cycle Ultrafast Energy Storage of Wadsley–Roth Phase Fe–Nb Oxides with a Desolvation Promoting Interfacial Layer. Nano Letters, 2021, 21, 9675-9683.	4.5	17
47	Achieving a Stable Solid Electrolyte Interphase and Enhanced Thermal Stability by a Dual-Functional Electrolyte Additive toward a High-Loading LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ /Lithium Pouch Battery. ACS Applied Materials & amp; Interfaces, 2021, 13, 57142-57152.	4.0	14
48	Pt3Ni@C Composite Material Designed and Prepared Based on Volcanic Catalytic Curve and Its High-Performance Static Lithium Polysulfide Semiliquid Battery. Nanomaterials, 2021, 11, 3416.	1.9	0
49	Promoting kinetics of polysulfides redox reactions by the multifunctional CoS/C/CNT microspheres for high-performance lithium-sulfur batteries. Applied Surface Science, 2020, 504, 144463.	3.1	31
50	Rod-shaped Cu _{1.81} Te as a novel cathode material for aluminum-ion batteries. Dalton Transactions, 2020, 49, 729-736.	1.6	14
51	Pre-blended conductive agent to effectively improve the storage properties of LiNi0.6Co0.2Mn0.2O2 cathode materials. Journal of Power Sources, 2020, 448, 227445.	4.0	18
52	N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors. Electrochimica Acta, 2020, 331, 135348.	2.6	97
53	NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance. Nano Research, 2020, 13, 335-343.	5.8	28
54	Superiority of Single-Crystal to Polycrystalline LiNi <i>_x</i> Co <i>_y</i> Mn _{1–<i>x</i>–<i>y</i>} O ₂ Cathode Materials in Storage Behaviors for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 14938-14948.	3.2	43

JIN-BAO ΖΗΑΟ

#	Article	IF	CITATIONS
55	A novel single-ion conductor gel polymer electrolyte prepared by co-irradiation grafting and electrospinning process. Solid State Ionics, 2020, 347, 115246.	1.3	21
56	An Innovative Lithium Ion Battery System Based on a Cu ₂ S Anode Material. ACS Applied Materials & Interfaces, 2020, 12, 17396-17405.	4.0	24
57	Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 33710-33718.	4.0	59
58	Achieving Ultrahighâ€Rate and Highâ€Safety Li ⁺ Storage Based on Interconnected Tunnel Structure in Microâ€Size Niobium Tungsten Oxides. Advanced Materials, 2020, 32, e1905295.	11.1	95
59	Magnesium Borate Fiber Coating Separators with High Lithiumâ€lon Transference Number for Lithiumâ€lon Batteries. ChemElectroChem, 2020, 7, 1187-1192.	1.7	12
60	Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO ₂ Cathode and Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 8316-8323.	4.0	44
61	An effective electrolyte design to improve the high-voltage performance of high-capacity NCM811 / SiOx-Gr batteries. Electrochimica Acta, 2020, 349, 136356.	2.6	27
62	Modeling analysis of the effect of battery design on internal short circuit hazard in LiNi0.8Co0.1Mn0.1O2/SiOx-graphite lithium ion batteries. International Journal of Heat and Mass Transfer, 2020, 153, 119590.	2.5	26
63	Uniform Li Plating/Stripping within Ni Macropore Arrays Enabled by Regulated Electric Field Distribution for Ultra-Stable Li-Metal Anodes. IScience, 2020, 23, 101089.	1.9	1
64	Exploring the Impact of Key Assembling Parameters on the Electrochemical Performance of Lithium Metal Symmetry Cell. Journal of the Electrochemical Society, 2020, 167, 020532.	1.3	3
65	A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Research, 2019, 12, 2535-2542.	5.8	35
66	Prediction of the heavy charging current effect on nickel-rich/silicon-graphite power batteries based on adiabatic rate calorimetry measurement. Journal of Power Sources, 2019, 438, 226971.	4.0	23
67	Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery. Applied Thermal Engineering, 2019, 161, 114144.	3.0	24
68	Semiâ€Interpenetrating Networkâ€Structured Singleâ€Ion Conduction Polymer Electrolyte for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 4483-4490.	1.7	28
69	First-principles study of alkali-metal intercalation in disordered carbon anode materials. Journal of Materials Chemistry A, 2019, 7, 19070-19080.	5.2	68
70	Strengthening dendrite suppression in lithium metal anode by in-situ construction of Li–Zn alloy layer. Electrochemistry Communications, 2019, 108, 106565.	2.3	27
71	Bifunctional Lithium Carboxylate for Stabilizing Both Lithium-Metal Anode and High-Voltage Cathode in Ether Electrolyte. ACS Applied Materials & amp; Interfaces, 2019, 11, 39715-39721.	4.0	5
72	A Parallel Bicomponent TPU/PI Membrane with Mechanical Strength Enhanced Isotropic Interfaces Used as Polymer Electrolyte for Lithium-Ion Battery. Polymers, 2019, 11, 185.	2.0	45

Jin-Bao Ζηαο

#	Article	IF	CITATIONS
73	Threeâ€Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
74	Three-Dimensional Coating Layer Modified Polyolefin Ceramic-Coated Separators to Enhance the Safety Performance of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2111-A2120.	1.3	24
75	Deep Insight into Electrochemical Kinetics of Cowpea‣ike Li ₃ VO ₄ @C Nanowires as Highâ€Rate Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 3920-3927.	1.7	14
76	An Effective Electrolyte Strategy To Improve the High-Voltage Performance of LiCoO ₂ Cathode Materials. ACS Applied Energy Materials, 2019, 2, 4683-4691.	2.5	22
77	Templateâ€Assisted Synthesis of Honeycombâ€Like CoFe ₂ O ₄ /CNTs/rGO Composite as Anode Material for Li/Naâ€lon Batteries. ChemElectroChem, 2019, 6, 3468-3477.	1.7	7
78	A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors. Electrochimica Acta, 2019, 309, 34-43.	2.6	73
79	Insights into the Mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte. Chemical Engineering Journal, 2019, 372, 37-45.	6.6	26
80	The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 229-238.	2.8	47
81	Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6986-6994.	4.0	25
82	Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 6118-6125.	4.0	80
83	A bifunctional electrolyte additive for H ₂ 0/HF scavenging and enhanced graphite/LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cell performance at a high voltage. Sustainable Energy and Fuels, 2018, 2, 1481-1490.	2.5	36
84	Synergistic Effect between LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and LiFe _{0.15} Mn _{0.85} PO ₄ /C on Rate and Thermal Performance for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16458-16466.	4.0	23
85	Investigation of the Na Storage Property of One-Dimensional Cu _{2–<i>x</i>} Se Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 13491-13498.	4.0	45
86	Constructing fast electron and ion conductive framework for Li2S as advanced lithium sulfur battery. Chemical Engineering Journal, 2018, 346, 57-64.	6.6	44
87	Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Advances, 2018, 8, 4072-4077.	1.7	55
88	Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries. Applied Surface Science, 2018, 441, 165-173.	3.1	68
89	The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry, 2018, 27, 1536-1554.	7.1	212
90	One-Dimensional Cu _{2–<i>x</i>} Se Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 17942-17949.	4.0	111

Jin-Bao Zhao

#	Article	IF	CITATIONS
91	Self-templating thermolysis synthesis of Cu2–xS@M (M = C, TiO2, MoS2) hollow spheres and their application in rechargeable lithium batteries. Nano Research, 2018, 11, 831-844.	5.8	30
92	Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an an anode for lithium ion batteries. Chemical Engineering Journal, 2018, 332, 49-56.	6.6	99
93	VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes. Chemical Communications, 2018, 54, 1178-1181.	2.2	38
94	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1513-1522.	5.2	198
95	Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties. Electronic Materials Letters, 2018, 14, 23-29.	1.0	3
96	A Simple Graphene NH3 Gas Sensor via Laser Direct Writing. Sensors, 2018, 18, 4405.	2.1	46
97	Self-adaptive electrochemical reconstruction boosted exceptional Li ⁺ ion storage in a Cu ₃ P@C anode. Journal of Materials Chemistry A, 2018, 6, 18821-18826.	5.2	60
98	Ultrafast One-Pot Air Atmospheric Solution Combustion Approach To Fabricate Mesoporous Metal Sulfide/Carbon Composites with Enhanced Lithium Storage Properties. ACS Applied Energy Materials, 2018, 1, 6190-6197.	2.5	9
99	Platinum Nanoparticles Dispersed on High-Surface-Area Roelike Nitrogen-Doped Mesoporous Carbon for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6198-6207.	2.5	12
100	The facile preparation of hollow Fe3O4/C/CNT microspheres assisted by the spray drying method as an	1.7	19
101	Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2018, 10, 25454-25464.	4.0	31
102	A long cycle-life Na-Mg hybrid battery with a chlorine-free electrolyte based on Mg(TFSI)2. Electrochimica Acta, 2018, 284, 1-9.	2.6	20
103	Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene) Tj ETQq1 1 0.7	84314 rgE 1.3	3T/Overlock
104	Electrophoretic Deposition of MnO _{<i>x</i>} @Carbon Nanotubes Film with Nestâ€Like Structure as Highâ€Performance Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 679-685.	1.7	13
105	TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 9519-9527.	1.1	21
106	A detailed thermal study of usual LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiMn 2 O 4 and LiFePO 4 cathode materials for lithium ion batteries. Journal of Energy Storage, 2017, 12, 37-44.	3.9	28
107	A high-safety PVDF/Al ₂ O ₃ composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Advances, 2017, 7, 24410-24416.	1.7	86
108	Novel Single Lithiumâ€lon Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq0 0 0 rgBT /Ov	erlock 10 1.7	Tf 50 67 Td (56

100

7

2352-2358.

JIN-BAO ΖΗΑΟ

#	Article	IF	CITATIONS
109	Preparation of monodispersed sulfur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulfur battery. Carbon, 2017, 114, 8-14.	5.4	53
110	Facile Synthesis of Rodâ€like Cu _{2â^'<i>x</i>} Se and Insight into its Improved Lithiumâ€Storage Property. ChemSusChem, 2017, 10, 2235-2241.	3.6	43
111	Rational Method for Improving the Performance of Lithiumâ€Sulfur Batteries: Coating the Separator with Lithium Fluoride. ChemElectroChem, 2017, 4, 1535-1543.	1.7	21
112	Microwave-assisted Synthesis of CuS/Graphene Composite for Enhanced Lithium Storage Properties. Electrochimica Acta, 2017, 225, 443-451.	2.6	89
113	A Promising Highâ€Voltage Cathode Material Based on Mesoporous Na ₃ V ₂ (PO ₄) ₃ /C for Rechargeable Magnesium Batteries. Chemistry - A European Journal, 2017, 23, 16898-16905.	1.7	63
114	Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries. Carbon, 2017, 124, 23-33.	5.4	79
115	Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2017, 365, 17-25.	4.0	25
116	High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery. Scientific Reports, 2017, 7, 11386.	1.6	43
117	Direct Electrophoretic Deposition of Binder-Free Co ₃ O ₄ /Graphene Sandwich-Like Hybrid Electrode as Remarkable Lithium Ion Battery Anode. ACS Applied Materials & Interfaces, 2017, 9, 32801-32811.	4.0	100
118	The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Journal of Power Sources, 2017, 363, 168-176.	4.0	134
119	Directly Coating a Multifunctional Interlayer on the Cathode via Electrospinning for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 29804-29811.	4.0	55
120	Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li ₃ VO ₄ @C Microsphere Composite Cathode Material for Aluminum-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 28486-28494.	4.0	98
121	Polystyrene-template-assisted synthesis of Li3VO4/C/rGO ternary composite with honeycomb-like structure for durable high-rate lithium ion battery anode materials. Electrochimica Acta, 2017, 247, 771-778.	2.6	40
122	CuS Microspheres as High-Performance Anode Material for Na-ion Batteries. Electrochimica Acta, 2017, 247, 851-859.	2.6	102
123	Preparation of One-dimensional Bamboo-like Cu2-xS@C Nanorods with Enhanced Lithium Storage Properties. Electrochimica Acta, 2017, 247, 271-280.	2.6	19
124	Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity. Electrochimica Acta, 2017, 247, 265-270.	2.6	40
125	Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. Journal of Materials Science, 2017, 52, 3630-3641.	1.7	33
126	Prussian Blue: A Potential Material to Improve the Electrochemical Performance of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4397-4403.	4.0	38

Jin-Bao Ζηαο

#	Article	IF	CITATIONS
127	Spray Drying-Assisted Synthesis of Li ₃ VO ₄ /C/CNTs Composites for High-Performance Lithium Ion Battery Anodes. Journal of the Electrochemical Society, 2017, 164, A6001-A6006.	1.3	49
128	High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers. Journal of Materials Chemistry A, 2017, 5, 97-101.	5.2	41
129	A Modified Ceramic-Coating Separator with High-Temperature Stability for Lithium-Ion Battery. Polymers, 2017, 9, 159.	2.0	61
130	A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. Journal of Membrane Science, 2016, 517, 91-99.	4.1	160
131	Binderâ€Free Carbon oated Silicon–Reduced Graphene Oxide Nanocomposite Electrode Prepared by Electrophoretic Deposition as a Highâ€Performance Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 757-763.	1.7	30
132	A facile spray drying route for mesoporous Li ₃ VO ₄ /C hollow spheres as an anode for long life lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7165-7168.	5.2	63
133	Hollow porous nanoparticles with Pt skin on a Ag–Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 8803-8811.	5.2	105
134	A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy and Environmental Science, 2016, 9, 3252-3261.	15.6	246
135	A Facile Electrophoretic Deposition Route to the Fe ₃ O ₄ /CNTs/rGO Composite Electrode as a Binder-Free Anode for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 26730-26739.	4.0	114
136	Thermal Synergy Effect between LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and LiMn ₂ O ₄ Enhances the Safety of Blended Cathode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20147-20156.	4.0	26
137	A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. Journal of Membrane Science, 2016, 518, 168-177.	4.1	91
138	Improving the electrochemical performance of Li _{1.2} Mn _{0.52} Co _{0.13} Ni _{0.13} O ₂ by surface nitrogen doping via plasma treatment. RSC Advances, 2016, 6, 31014-31018.	1.7	4
139	Effects of Li ₂ MnO ₃ coating on the high-voltage electrochemical performance and stability of Ni-rich layer cathode materials for lithium-ion batteries. RSC Advances, 2016, 6, 22625-22632.	1.7	27
140	Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. Journal of Power Sources, 2016, 310, 85-90.	4.0	45
141	A facile synthesis of copper sulfides composite with lithium-storage properties. Journal of Power Sources, 2015, 281, 185-191.	4.0	51
142	Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochimica Acta, 2015, 158, 368-373.	2.6	36
143	A homogeneous intergrown material of LiMn2O4 and LiNi0.5Mn1.5O4 as a cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2353-2360.	5.2	33
144	Development and characterization of silica tube-coated separator for lithium ion batteries. Journal of Power Sources, 2015, 284, 10-15.	4.0	62

JIN-BAO ZHAO

#	Article	IF	CITATIONS
145	Superiority of the bi-phasic mixture of a tin-based alloy nanocomposite as the anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 3794-3800.	5.2	43
146	Electrospun Nanofibers for Sandwiched Polyimide/Poly (vinylidene fluoride)/Polyimide Separators with the Thermal Shutdown Function. Electrochimica Acta, 2015, 176, 727-734.	2.6	121
147	Binder-Free Si Nanoparticle Electrode with 3D Porous Structure Prepared by Electrophoretic Deposition for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 7497-7504.	4.0	68
148	New Insight into the Interaction between Carbonate-based Electrolyte and Cuprous Sulfide Electrode Material for Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 1079-1087.	2.6	27
149	Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. Journal of Power Sources, 2015, 298, 158-165.	4.0	125
150	Improving the electrochemical properties of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ at 4.6 V cutoff potential by surface coating with Li ₂ TiO ₃ for lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 32033-32043.	1.3	80
151	The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science, 2015, 474, 148-155.	4.1	144
152	Synthesis of Oneâ€Dimensional Copper Sulfide Nanorods as Highâ€Performance Anode in Lithium Ion Batteries. ChemSusChem, 2014, 7, 3328-3333.	3.6	80
153	Porous LiNi _{0.5} Mn _{1.5} O ₄ sphere as 5 V cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16434-16442.	5.2	45
154	Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. Journal of Power Sources, 2014, 270, 547-553.	4.0	216
155	Core-Shell Structured Gel Polymer Electrolyte with Single-Ion Conducting and Thermal Stability Bifunction for Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	1.3	3