
Charles Farber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and Identification of Plant Pathogens on Maize Kernels with a Hand-Held Raman Spectrometer. Analytical Chemistry, 2018, 90, 3009-3012.	6.5	132
2	Advanced spectroscopic techniques for plant disease diagnostics. A review. TrAC - Trends in Analytical Chemistry, 2019, 118, 43-49.	11.4	101
3	Complementarity of Raman and Infrared Spectroscopy for Structural Characterization of Plant Epicuticular Waxes. ACS Omega, 2019, 4, 3700-3707.	3.5	76
4	Nanoscale Structural Organization of Plant Epicuticular Wax Probed by Atomic Force Microscope Infrared Spectroscopy. Analytical Chemistry, 2019, 91, 2472-2479.	6.5	53
5	Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 2019, 250, 1247-1254.	3.2	46
6	Rapid and Noninvasive Typing and Assessment of Nutrient Content of Maize Kernels Using a Handheld Raman Spectrometer. ACS Omega, 2019, 4, 16330-16335.	3.5	39
7	Noninvasive and Nondestructive Detection of Cowpea Bruchid within Cowpea Seeds with a Hand-Held Raman Spectrometer. Analytical Chemistry, 2019, 91, 1733-1737.	6.5	39
8	Raman Spectroscopy Enables Non-Invasive Identification of Peanut Genotypes and Value-Added Traits. Scientific Reports, 2020, 10, 7730.	3.3	38
9	Forensic identification of urine on cotton and polyester fabric with a hand-held Raman spectrometer. Forensic Chemistry, 2018, 9, 44-49.	2.8	26
10	Non-Invasive Characterization of Single-, Double- and Triple-Viral Diseases of Wheat With a Hand-Held Raman Spectrometer. Frontiers in Plant Science, 2020, 11, 01300.	3.6	22
11	Confirmatory non-invasive and non-destructive identification of poison ivy using a hand-held Raman spectrometer. RSC Advances, 2020, 10, 21530-21534.	3.6	14
12	Potential of Spatially Offset Raman Spectroscopy for Detection of Zebra Chip and Potato Virus Y Diseases of Potatoes (<i>Solanum tuberosum</i>). ACS Agricultural Science and Technology, 2021, 1, 211-221.	2.3	10
13	Raman-Based Diagnostics of Stalk Rot Disease of Maize Caused by Colletotrichum graminicola. Frontiers in Plant Science, 2021, 12, 722898.	3.6	10
14	Raman spectroscopyâ€based diagnostics of water deficit and salinity stresses in two accessions of peanut. Plant Direct, 2021, 5, e342.	1.9	9
15	Raman Spectroscopy and Machine Learning for Agricultural Applications: Chemometric Assessment of Spectroscopic Signatures of Plants as the Essential Step Toward Digital Farming. Frontiers in Plant Science, 2022, 13, 887511.	3.6	7
16	Non-invasive post-mortem interval diagnostics using a hand-held Raman spectrometer. Forensic Chemistry, 2020, 20, 100270.	2.8	6
17	Non-Invasive Identification of Nutrient Components in Grain. Molecules, 2021, 26, 3124.	3.8	6
18	Exploring a possibility of using Raman spectroscopy for detection of Lyme disease. Journal of	2.3	5

Biophotonics, 2021, 14, e202000477.