Patrick Lehodey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3713954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ocean Futures for the World's Largest Yellowfin Tuna Population Under the Combined Effects of Ocean Warming and Acidification. Frontiers in Marine Science, 2022, 9, .	1.2	9
2	Modeling Antarctic Krill Circumpolar Spawning Habitat Quality to Identify Regions With Potential to Support High Larval Production. Geophysical Research Letters, 2021, 48, e2020GL091206.	1.5	10
3	Exploring the future of the Coral Sea micronekton. Progress in Oceanography, 2021, 195, 102593.	1.5	4
4	Pathways to sustaining tuna-dependent Pacific Island economies during climate change. Nature Sustainability, 2021, 4, 900-910.	11.5	47
5	Food talk: 40-Hz fin whale calls are associated with prey biomass. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211156.	1.2	18
6	Towards a better characterisation of deep-diving whales' distributions by using prey distribution model outputs?. PLoS ONE, 2021, 16, e0255667.	1.1	8
7	Differences in regional oceanography and prey biomass influence the presence of foraging odontocetes at two Atlantic seamounts. Marine Mammal Science, 2020, 36, 158-179.	0.9	3
8	Integrating tagging and fisheries data into a spatial population dynamics model to improve its predictive skills. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 576-593.	0.7	19
9	Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 175, 104667.	0.6	11
10	Modelled midâ€ŧrophic pelagic prey fields improve understanding of marine predator foraging behaviour. Ecography, 2020, 43, 1014-1026.	2.1	19
11	Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model. Biogeosciences, 2020, 17, 833-850.	1.3	1
12	Environmental drivers of largeâ€scale movements of baleen whales in the midâ€North Atlantic Ocean. Diversity and Distributions, 2020, 26, 683-698.	1.9	36
13	Micronekton distribution in the southwest Pacific (New Caledonia) inferred from shipboard-ADCP backscatter data. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 159, 103237.	0.6	12
14	Successful Blue Economy Examples With an Emphasis on International Perspectives. Frontiers in Marine Science, 2019, 6, .	1.2	89
15	Copernicus Marine Service Ocean State Report, Issue 3. Journal of Operational Oceanography, 2019, 12, S1-S123.	0.6	66
16	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	1.2	80
17	Observational Needs Supporting Marine Ecosystems Modeling and Forecasting: From the Global Ocean to Regional and Coastal Systems. Frontiers in Marine Science, 2019, 6, .	1.2	32
18	An individual-based model of skipjack tuna (Katsuwonus pelamis) movement in the tropical Pacific ocean. Progress in Oceanography, 2018, 164, 63-74.	1.5	27

PATRICK LEHODEY

#	Article	IF	CITATIONS
19	Operationalising access to oceanic fisheries resources by small-scale fishers to improve food security in the Pacific Islands. Marine Policy, 2018, 88, 315-322.	1.5	23
20	Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Marine Policy, 2018, 88, 303-314.	1.5	59
21	Modelling South Pacific jack mackerel spatial population dynamics and fisheries. Fisheries Oceanography, 2018, 27, 97-113.	0.9	9
22	Operational modelling of bigeye tuna (Thunnus obesus) spatial dynamics in the Indonesian region. Marine Pollution Bulletin, 2018, 131, 19-32.	2.3	16
23	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	1.3	116
24	Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Progress in Oceanography, 2017, 152, 15-49.	1.5	165
25	Standardization of a geo-referenced fishing dataÂsetÂforÂthe Indian Ocean bigeye tuna, <i>ThunnusÂobesus</i> Â(1952–2014). Earth System Science Data, 2017, 9, 163-179.	3.7	3
26	Optimization of a micronekton model with acoustic data. ICES Journal of Marine Science, 2015, 72, 1399-1412.	1.2	56
27	Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 125-144.	0.6	29
28	Building the capacity for forecasting marine biogeochemistry and ecosystems: recent advances and future developments. Journal of Operational Oceanography, 2015, 8, s168-s187.	0.6	63
29	Modelling the impact of climate change on South Pacific albacore tuna. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 246-259.	0.6	68
30	An ecosystem-driven model for spatial dynamics and stock assessment of North Atlantic albacore. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 864-878.	0.7	19
31	The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus) Tj ETQq1 1 0.7843	14 rgBT /(0.6	Dverlock 10 T 44
32	The trophodynamics of marine top predators: Current knowledge, recent advances and challenges. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 170-187.	0.6	132
33	Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean. Progress in Oceanography, 2014, 129, 285-313.	1.5	58
34	Understanding mechanisms that control fish spawning and larval recruitment: Parameter optimization of an Eulerian model (SEAPODYM-SP) with Peruvian anchovy and sardine eggs and larvae data. Progress in Oceanography, 2014, 123, 105-122.	1.5	12
35	Comparative ecology of widely distributed pelagic fish species in the North Atlantic: Implications for modelling climate and fisheries impacts. Progress in Oceanography, 2014, 129, 219-243.	1.5	97
36	Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Progress in Oceanography, 2014, 120, 383-398.	1.5	60

PATRICK LEHODEY

#	Article	IF	CITATIONS
37	Predicting Cetacean Habitats from Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical Regions. PLoS ONE, 2014, 9, e105958.	1.1	53
38	Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (<i>Thunnus alalunga</i>). Earth System Science Data, 2014, 6, 317-329.	3.7	10
39	Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climatic Change, 2013, 119, 95-109.	1.7	121
40	An ocean observation system for monitoring the affects of climate change on the ecology and sustainability of pelagic fisheries in the Pacific Ocean. Climatic Change, 2013, 119, 131-145.	1.7	33
41	Effects of climate change on oceanic fisheries in the tropical Pacific: implications for economic development and food security. Climatic Change, 2013, 119, 199-212.	1.7	59
42	Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nature Climate Change, 2013, 3, 591-599.	8.1	251
43	The True Challenge of Giant Marine Reserves. Science, 2013, 340, 810-811.	6.0	19
44	A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the Oceanic North Pacific. PLoS ONE, 2013, 8, e73274.	1.1	63
45	Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna () Tj ETQq1 1 0.784314 r America, 2012, 109, 18221-18225.	gBT /Overl 3.3	ock 10 Tf 5 59
46	A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean. Fisheries Oceanography, 2011, 20, 517-529.	0.9	30
47	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	1.5	272
48	Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Progress in Oceanography, 2010, 84, 69-84.	1.5	120
49	Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario. Progress in Oceanography, 2010, 86, 302-315.	1.5	106
50	CLimate Impacts on Oceanic TOp Predators (CLIOTOP): Introduction to the Special Issue of the CLIOTOP International Symposium, La Paz, Mexico, 3–7 December 2007. Progress in Oceanography, 2010, 86, 1-7.	1.5	18
51	Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems. Oceanography, 2009, 22, 206-215.	0.5	69
52	Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna. Progress in Oceanography, 2008, 78, 319-335.	1.5	65
53	A spatial ecosystem and populations dynamics model (SEAPODYM) – Modeling of tuna and tuna-like nonulations. Progress in Oceanography, 2008, 78, 304-318	1.5	201

PATRICK LEHODEY

#	Article	IF	CITATIONS
55	Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results. Fisheries Oceanography, 2003, 12, 474-482.	0.9	52
56	Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model. Fisheries Oceanography, 2003, 12, 483-494.	0.9	152
57	The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO. Progress in Oceanography, 2001, 49, 439-468.	1.5	88
58	Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bioâ \in geochemical model. Fisheries Oceanography, 1998, 7, 317-325.	0.9	107
59	A spatial population dynamics simulation model of tropical tunas using a habitat index based on environmental parameters. Fisheries Oceanography, 1998, 7, 326-334.	0.9	72
60	El Niño Southern Oscillation and tuna in the western Pacific. Nature, 1997, 389, 715-718.	13.7	394
61	Reproductive biology and ecology of a deep-demersal fish, alfonsino Beryx splendens , over the seamounts off New Caledonia. Marine Biology, 1997, 128, 17-27.	0.7	28
62	Influence of temperature and ENSO events on the growth of the deep demersal fish alfonsino, Beryx splendens, off New Caledonia in the western tropical South Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 49-57.	0.6	14
63	Age and growth of the alfonsino Beryx splendens over the seamounts off New Caledonia. Marine Biology, 1996, 125, 249-258.	0.7	14