Vishesh Dubey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3713734/publications.pdf

Version: 2024-02-01

687363 794594 49 431 13 19 citations h-index g-index papers 55 55 55 253 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unbalanced low coherence interference microscopy. Optics and Lasers in Engineering, 2022, 151, 106932.	3.8	2
2	Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light: Science and Applications, 2022, 11, 43.	16.6	11
3	Lulworthinone: In Vitro Mode of Action Investigation of an Antibacterial Dimeric Naphthopyrone Isolated from a Marine Fungus. Marine Drugs, 2022, 20, 277.	4.6	4
4	Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. Nanophotonics, 2022, 11, 3421-3436.	6.0	1
5	Deriving high contrast fluorescence microscopy images through low contrast noisy image stacks. Biomedical Optics Express, 2021, 12, 5529.	2.9	2
6	A transparent waveguide chip for versatile total internal reflection fluorescence-based microscopy and nanoscopy. Communications Materials, 2021, 2, .	6.9	15
7	High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination. Scientific Reports, 2021, 11, 15850.	3.3	7
8	Effect of Detector's Noise in White Light Interferometry Based Quantitative Phase Microscopy. Springer Proceedings in Physics, 2021, , 621-624.	0.2	0
9	Longitudinal Spatial Coherence Gated Optical Tomography and Topography. Springer Proceedings in Physics, 2021, , 549-552.	0.2	O
10	Photonic-chip: a multimodal imaging tool for histopathology. , 2021, , .		0
11	Quantitative assessment of morphology and sub-cellular changes in macrophages and trophoblasts during inflammation. Biomedical Optics Express, 2020, 11 , 3733.	2.9	7
12	Deep learning architecture "LightOCT―for diagnostic decision support using optical coherence tomography images of biological samples. Biomedical Optics Express, 2020, 11, 5017.	2.9	20
13	Sub-nanometer height sensitivity by phase shifting interference microscopy under environmental fluctuations. Optics Express, 2020, 28, 9340.	3.4	13
14	High space-bandwidth in quantitative phase imaging using partially spatially coherent digital holographic microscopy and a deep neural network. Optics Express, 2020, 28, 36229.	3.4	14
15	Field-portable multi-modal chip-based fluorescence, bright field and quantitative phase microscopy using smartphone detecting system. , 2020, , .		1
16	Speckle-free quantitative phase microscopy using pseudo-thermal light source for label-free imaging of biological cells and tissues with high temporal phase stability and spatial phase sensitivity. , 2020, , .		0
17	Highly temporal stable, wavelength-independent, and scalable field-of-view common-path quantitative phase microscope. Journal of Biomedical Optics, 2020, 25, .	2.6	3
18	Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Scientific Reports, 2019, 9, 3564.	3.3	32

#	Article	IF	CITATIONS
19	Speckle-free quantitative phase and amplitude imaging using common-path lateral shearing interference microscope with pseudo-thermal light source illumination. Optik, 2019, 180, 991-996.	2.9	14
20	Low coherence quantitative phase microscopy with machine learning model and Raman spectroscopy for the study of breast cancer cells and their classification. Applied Optics, 2019, 58, A112.	1.8	18
21	Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography. Applied Optics, 2019, 58, A135.	1.8	27
22	Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging. Optics Express, 2019, 27, 4572.	3.4	19
23	Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence. Optics Letters, 2019, 44, 1817.	3.3	22
24	Classification of human spermatozoa using quantitative phase imaging and machine learning., 2019,,.		0
25	High space-bandwidth product with high spatial phase sensitivity in single-shot digital holographic microscopy. , 2019, , .		0
26	Novel highly stable wavelength independent quantitative phase microscope. , 2019, , .		0
27	Digital holographic microscopy and machine learning approach for the classification of inflammation in macrophages. , 2019, , .		1
28	Relationship between the source size at the diffuser plane and the longitudinal spatial coherence function of the optical coherence microscopy system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, D41.	1.5	2
29	3D topography and tomography of multilayered freeform optical surfaces using large-range measurement swept-source low-coherence interferometry. Laser Physics, 2018, 28, 116101.	1.2	3
30	Spectrally resolved laser interference microscopy. Laser Physics Letters, 2018, 15, 075602.	1.4	9
31	Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages. Optics Express, 2018, 26, 19864.	3.4	18
32	Quantitative phase microscopy of red blood cells during planar trapping and propulsion. Lab on A Chip, 2018, 18, 3025-3036.	6.0	27
33	Chip-based Total Internal Reflection Fluorescence Microscopy. , 2018, , .		0
34	Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination. , 2018 , , .		0
35	Inflammatory response of macrophages and trophoblasts investigated using structured illumination microscopy and quantitative phase microscopy. Placenta, 2017, 57, 333.	1.5	2
36	Quantitative phase imaging using white light interference microscopy with color fringe analysis: A comparative study of color interferograms recorded by single chip and 3-chip CCD color camera. Proceedings of SPIE, 2017, , .	0.8	O

#	Article	IF	CITATIONS
37	Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells. Proceedings of SPIE, 2017, , .	0.8	6
38	Quantitative phase imaging using spectrally resolved white light interferometry. Proceedings of SPIE, 2017, , .	0.8	0
39	Polarization interferometric digital holographic microscope for quantitative phase imaging and coherent noise reduction. Proceedings of SPIE, 2017, , .	0.8	0
40	Fiber-Optic Micro-Endoscopy for Imaging Biological Cells at Remote Location and Depixelation of Images Using Discrete Cosine Transform. , 2017, , .		0
41	Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs. Applied Optics, 2016, 55, 2521.	2.1	35
42	Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source. Optics Letters, 2016, 41, 1554.	3.3	47
43	White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water. , $2016, , .$		4
44	A novel phase shifting structured illumination microscopy. Proceedings of SPIE, 2016, , .	0.8	0
45	Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement. Proceedings of SPIE, 2016, , .	0.8	2
46	Chapter 10 Full-Field Optical Coherence Tomography and Microscopy Using Spatially Incoherent Monochromatic Light., 2016,, 357-392.		3
47	Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity. Applied Physics Letters, 2015, 106, 093701.	3.3	34
48	High-resolution white light interferometry for quantitative phase imaging of human red blood cells using three-chip colour camera. , 2014, , .		4
49	Investigation of polymer composites using optical coherence tomography., 2014,,.		O