Liang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3713033/publications.pdf Version: 2024-02-01

LIANC 7HOLL

#	Article	IF	CITATIONS
1	Highly Efficient Green and Blueâ€Green Phosphorescent OLEDs Based on Iridium Complexes with the Tetraphenylimidodiphosphinate Ligand. Advanced Materials, 2011, 23, 4041-4046.	11.1	291
2	Synthesis of 3D Hierarchical Fe ₃ O ₄ /Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. Journal of Physical Chemistry C, 2011, 115, 21567-21573.	1.5	288
3	Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chemistry of Materials, 2012, 24, 444-450.	3.2	223
4	Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale, 2017, 9, 491-496.	2.8	203
5	Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. Journal of Materials Chemistry C, 2018, 6, 7527-7532.	2.7	149
6	An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9%. Advanced Materials, 2020, 32, e2001248.	11.1	134
7	Configurationally Stable Platinahelicene Enantiomers for Efficient Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 5672-5676.	1.7	98
8	Highly efficient deep-blue OLEDs based on hybridized local and charge-transfer emitters bearing pyrene as the structural unit. Chemical Communications, 2019, 55, 6317-6320.	2.2	89
9	Highly efficient green phosphorescent OLEDs based on a novel iridium complex. Journal of Materials Chemistry C, 2013, 1, 560-565.	2.7	86
10	Dual-emissive 2-(2′-hydroxyphenyl)oxazoles for high performance organic electroluminescent devices: discovery of a new equilibrium of excited state intramolecular proton transfer with a reverse intersystem crossing process. Chemical Science, 2018, 9, 1213-1220.	3.7	84
11	One-pot synthesis of flowerlike Ni7S6and its application in selective hydrogenation of chloronitrobenzene. Journal of Materials Chemistry, 2010, 20, 1078-1085.	6.7	75
12	Unexpected Sole Enolâ€Form Emission of 2â€{2′â€Hydroxyphenyl)oxazoles for Highly Efficient Deepâ€Blueâ€Emitting Organic Electroluminescent Devices. Advanced Functional Materials, 2017, 27, 1605245.	7.8	72
13	Chiral Thermally Activated Delayed Fluorescence Materials Based on <i>R</i> / <i>S</i> â€ <i>N</i> ² , <i>N</i> ² ′â€Diphenylâ€{1,1′â€binaphthalene]â€2 Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence. Advanced Functional Materials, 2021, 31, 2103875.	,2′â€d 7.8	iamine 61
14	Semitransparent Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiency over 30% and Dissymmetry Factor Close to 10 ^{â^'2} . Advanced Functional Materials, 2021, 31, 2102898.	7.8	60
15	Rapid room temperature synthesis of red iridium(<scp>iii</scp>) complexes containing a four-membered Ir–S–C–S chelating ring for highly efficient OLEDs with EQE over 30%. Chemical Science, 2019, 10, 3535-3542.	3.7	55
16	One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy. Journal of Physical Chemistry Letters, 2021, 12, 8939-8946.	2.1	55
17	Rare Earth Complex as Electron Trapper and Energy Transfer Ladder for Efficient Red Iridium Complex Based Electroluminescent Devices. ACS Applied Materials & Interfaces, 2015, 7, 16046-16053.	4.0	53
18	A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Organic Electronics, 2021, 96, 106216.	1.4	51

#	Article	IF	CITATIONS
19	Efficient Red Electroluminescent Devices with Sterically Hindered Phosphorescent Platinum(II) Schiff Base Complexes and Iridium Complex Codopant. Chemistry - an Asian Journal, 2014, 9, 2984-2994.	1.7	48
20	Acquiring Highâ€Performance Deepâ€Blue OLED Emitters through an Unexpected Blueshift Colorâ€Tuning Effect Induced by Electronâ€Donating â€OMe Substituents. Chemistry - A European Journal, 2018, 24, 8056-8060.	1.7	38
21	Utilization of Ternary Europium Complex for Organic Electroluminescent Devices and as a Sensitizer to Improve Electroluminescence of Red-Emitting Iridium Complex. Inorganic Chemistry, 2019, 58, 8316-8331.	1.9	38
22	Pure Red Iridium(III) Complexes Possessing Good Electron Mobility with 1,5-Naphthyridin-4-ol Derivatives for High-Performance OLEDs with an EQE over 31%. ACS Applied Materials & Interfaces, 2019, 11, 20192-20199.	4.0	37
23	A facile color-tuning strategy for constructing a library of Ir(<scp>iii</scp>) complexes with fine-tuned phosphorescence from bluish green to red using a synergetic substituent effect of –OCH ₃ and –CN at only the C-ring of C^N ligand. Journal of Materials Chemistry C, 2016, 4, 4269-4277.	2.7	36
24	Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes. Scientific Reports, 2016, 6, 38478.	1.6	35
25	A single component white electroluminescent device fabricated from a metallo-organic terbium complex. Journal of Materials Chemistry C, 2019, 7, 13966-13975.	2.7	35
26	Highly Efficient Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Iridium Complexes Containing Pinene Sterically Hindered Spacer. Advanced Optical Materials, 2016, 4, 1726-1731.	3.6	34
27	High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers. Journal of Materials Chemistry C, 2017, 5, 2066-2073.	2.7	31
28	Monochromatic red electroluminescence from a homodinuclear europium(<scp>iii</scp>) complex of a β-diketone tethered by 2,2′-bipyrimidine. Journal of Materials Chemistry C, 2020, 8, 9816-9827.	2.7	29
29	Bright and efficient red emitting electroluminescent devices fabricated from ternary europium complexes. Journal of Materials Chemistry C, 2020, 8, 5600-5612.	2.7	28
30	Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels. Journal of Luminescence, 2016, 170, 692-696.	1.5	26
31	Highly efficient orange-red electroluminescence of iridium complexes with good electron mobility. Journal of Materials Chemistry C, 2017, 5, 8150-8159.	2.7	25
32	Conversion process of the dominant electroluminescence mechanism in a molecularly doped organic light-emitting device with only electron trapping. Journal of Applied Physics, 2007, 102, 064504.	1.1	24
33	Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer. Dyes and Pigments, 2017, 136, 361-367.	2.0	23
34	Salts of Lanthanide(III) Hexafluoroacetylacetonates [Ln = Sm(III), Eu(III) and Tb(III)] with Dipyridylammonium cations: Synthesis, characterization, photophysical properties and OLED fabrication. Dyes and Pigments, 2022, 203, 110300.	2.0	23
35	Green phosphorescent organic electroluminescent devices with 27.9% external quantum efficiency by employing a terbium complex as a co-dopant. Journal of Materials Chemistry C, 2019, 7, 7953-7958.	2.7	22
36	Synthesis and photophysical properties of ternary β-diketonate europium(III) complexes incorporating bipyridine and its derivatives. Dyes and Pigments, 2022, 197, 109879.	2.0	21

#	Article	IF	CITATIONS
37	Green organic light-emitting devices with external quantum efficiency up to nearly 30% based on an iridium complex with a tetraphenylimidodiphosphinate ligand. RSC Advances, 2016, 6, 63200-63205.	1.7	20
38	Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and LLZTO. Journal of Colloid and Interface Science, 2020, 580, 389-398.	5.0	20
39	Efficient organic blue fluorescent light-emitting devices with improved carriers' balance on emitter molecules by constructing supplementary light-emitting layer. Dyes and Pigments, 2016, 130, 148-153.	2.0	19
40	Efficient orange-red electroluminescence of iridium complexes with 1-(2,6-bis(trifluoromethyl)pyridin-4-yl)isoquinoline and 4-(2,6-bis(trifluoromethyl)pyridin-4-yl)quinazoline ligands. Dalton Transactions, 2017, 46, 14916-14925.	1.6	19
41	Efficient phosphorescent red iridium(<scp>iii</scp>) complexes containing a four-membered Ir–S–C–S ring backbone and large hindered spacers for high-performance OLEDs. Journal of Materials Chemistry C, 2019, 7, 3862-3868.	2.7	19
42	Mechanisms of efficiency enhancement in the doped electroluminescent devices based on a europium complex. Journal of Applied Physics, 2008, 104, 114507.	1.1	18
43	Highly efficient pure red organic light-emitting devices based on tris(1-phenyl-isoquinoline) iridium(III) with another wide gap iridium(III) complex as sensitizer. Dyes and Pigments, 2016, 128, 26-32.	2.0	18
44	A Simple Strategy for the Controlled Synthesis of Ultrasmall Hexagonalâ€Phase NaYF ₄ :Yb,Er Upconversion Nanocrystals. ChemPhotoChem, 2017, 1, 369-375.	1.5	18
45	Preparation and characterisation of dual sensing carbon dots for water and Cu2+ detection. Dyes and Pigments, 2022, 198, 110008.	2.0	18
46	High-Brightness, Broad-Spectrum White Organic Electroluminescent Device Obtained by Designing Light-Emitting Layers as also Carrier Transport Layers. Journal of Physical Chemistry C, 2010, 114, 21723-21727.	1.5	17
47	Investigation progresses of rare earth complexes as emitters or sensitizers in organic light-emitting diodes. Light: Science and Applications, 2022, 11, .	7.7	17
48	A series of red iridium(<scp>iii</scp>) complexes using flexible dithiocarbamate derivatives as ancillary ligands for highly efficient phosphorescent OLEDs. Materials Chemistry Frontiers, 2019, 3, 860-866.	3.2	16
49	Improved color quality in double-EML WOLEDs by using a tetradentate Pt(<scp>ii</scp>) complex as a green/red emitter. Journal of Materials Chemistry C, 2021, 9, 3384-3390.	2.7	16
50	Pure-blue fluorescent organic light-emitting diodes by co-doping a supplementary host material into a light-emitting layer as an electron transport ladder. Journal of Materials Chemistry C, 2020, 8, 3438-3444.	2.7	15
51	Facile synthesis of nitrogen-doped carbon dots with robust fluorescence in a strongly alkaline solution and a reversible fluorescence â€`off–on' switch between strongly acidic and alkaline solutions. RSC Advances, 2016, 6, 108203-108208.	1.7	14
52	Synthesis and optoelectronic properties of oxadiazole coordinated boron complexes. CrystEngComm, 2016, 18, 4382-4387.	1.3	14
53	Efficient blueâ€emitting Ir(III) complexes with phenylâ€methylâ€benzimidazolyl and picolinate ligands: A DFT and timeâ€dependent DFT study. International Journal of Quantum Chemistry, 2013, 113, 1641-1649. -	1.0	13
54	Highly efficient green organic light-emitting devices based on terbium complex by employing hole block material as host. Science China Technological Sciences, 2018, 61, 1334-1339.	2.0	13

Liang Zhou

#	Article	IF	CITATIONS
55	Highly efficient green single-emitting layer phosphorescent organic light-emitting diodes with an iridium(<scp>iii</scp>) complex as a hole-type sensitizer. Journal of Materials Chemistry C, 2019, 7, 2744-2750.	2.7	13
56	Efficient multi-light-emitting layers warm and pure white phosphorescent organic light-emitting diodes with excellent color stability. Journal of Luminescence, 2020, 228, 117596.	1.5	12
57	Density functional theory and timeâ€dependent density functional theory study on a series of iridium complexes with tetraphenylimidodiphosphinate ligand. Journal of Physical Organic Chemistry, 2013, 26, 840-848.	0.9	11
58	High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter. Journal of Materials Chemistry C, 2017, 5, 4219-4225.	2.7	11
59	High efficiency electroluminescence of orange-red iridium(III) complexes for OLEDs with an EQE over 30%. Dyes and Pigments, 2021, 195, 109733.	2.0	11
60	Efficient green electroluminescent devices based on iridium complex with wide energy gap complexes as sensitizers. Organic Electronics, 2016, 37, 85-92.	1.4	10
61	Synthesis and Near Infrared Luminescence Properties of a Series of Lanthanide Complexes with POSS Modified Ligands. Molecules, 2019, 24, 1253.	1.7	10
62	High performance red organic electroluminescent devices based on a trivalent iridium complex with stepwise energy levels. RSC Advances, 2016, 6, 71282-71286.	1.7	9
63	Unveiling the Relationship between Energy Transfer and the Triplet Energy Level by Tuning Diarylethene within Europium(III) Complexes. Inorganic Chemistry, 2020, 59, 661-668.	1.9	9
64	High-performance thermally activated delayed fluorescence organic light-emitting diodes with a wide gap phosphorescent complex as a sensitizer. Journal of Materials Chemistry C, 2020, 8, 5984-5990.	2.7	9
65	The Reasons for Ligandâ€Dependent Quantum Yields and Absorption Spectrum of Four Polypyridylruthenium(II) Complexes with a Tetrazolateâ€Based Ligand: TDDFT Study. European Journal of Inorganic Chemistry, 2009, 2009, 4052-4061.	1.0	8
66	Bright electroluminescent devices with tunable spectra obtained by strictly controlling the doping concentration of electron injection sensitizer. Journal of Luminescence, 2010, 130, 2265-2270.	1.5	8
67	The width of exciton formation zone dominates the performance of phosphorescent organic light emitting diodes. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	7
68	Efficient red electroluminescent devices with very low operation voltage by utilizing hole and electron transport materials as the host. Thin Solid Films, 2021, 717, 138474.	0.8	7
69	An effective encapsulation for perovskite solar cells based on building-integrated photovoltaics. Journal of Materials Chemistry C, 2022, 10, 8972-8978.	2.7	7
70	Highly efficient green and white fluorescent organic electroluminescent devices with co-doped electron transport material as both supplementary host and blue emitter. Journal of Luminescence, 2018, 204, 668-675.	1.5	6
71	Efficient deep-blue organic light-emitting diodes with low driving voltage and high color purity. Optical Materials, 2021, 115, 111044.	1.7	6
72	Investigating the exciton formation zone and its roles in phosphorescent organic light emitting diodes. Semiconductor Science and Technology, 2021, 36, 125014.	1.0	6

#	Article	IF	CITATIONS
73	Efficient single light-emitting layer pure blue phosphorescent organic light-emitting devices with wide gap host and matched interlayer. Journal of Luminescence, 2015, 168, 38-42.	1.5	5
74	High performance blue and white phosphorescent organic light-emitting diodes obtained by sensitizing both light-emitting and electron transport layers. Journal of Luminescence, 2021, 238, 118226.	1.5	5
75	Utilization of double-sensitized structure toward achieving high performance green and red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 11729-11737.	2.7	5
76	Efficient Nondoped Pure Red/Near-Infrared TADF OLEDs by Designing and Adjusting Double Quantum Wells Structure. ACS Applied Electronic Materials, 2022, 4, 3615-3622.	2.0	5
77	Efficient blue organic light-emitting diodes with low operation voltage by improving the injection and transport of holes. Optical Materials, 2019, 97, 109383.	1.7	4
78	Bright red phosphorescent organic electroluminescent devices with slow efficiency roll-off by utilizing iridium(III) complex as hole-type sensitizer. Dyes and Pigments, 2020, 178, 108311.	2.0	4
79	High performance blue and white fluorescent organic electroluminescent devices with conventional electron transport material as blue emitter. Dyes and Pigments, 2020, 178, 108354.	2.0	4
80	Highly efficient yellow organic light-emitting diodes with slow efficiency roll-off by mixing red and green emissions. Optical Materials, 2021, 119, 111309.	1.7	4
81	Efficient green fluorescent organic light-emitting diodes with extended lifetimes by exploiting an iridium complex as a sensitizer. Journal of Materials Chemistry C, 2021, 9, 15295-15300.	2.7	4
82	Facile access to high-performance reverse intersystem crossing OLED materials through an unsymmetrical D-A-D' molecular scaffold. Chemical Engineering Journal, 2022, 450, 137989.	6.6	4
83	Efficient green organic electroluminescent devices based on thermally activated delayed fluorescence emitter by constructing supplementary light-emitting layer. Thin Solid Films, 2019, 685, 353-359.	0.8	3
84	Efficient green electroluminescent devices with low operation voltage and slow efficiency roll-off by utilizing hole transport material as host. Optical Materials, 2021, 112, 110773.	1.7	3
85	Highly efficient solution-processed white organic light-emitting diodes based on a co-host system by controlling energy transfer among different emitters. Journal of Materials Chemistry C, 2022, 10, 5648-5656.	2.7	3
86	High Performance Yellow Phosphorescent Organic Light-Emitting Diodes Based on an Efficient Carriers Regulating Structure with Iridium Complex as Electron Manager. Journal of Physical Chemistry C, 2021, 125, 25422-25429.	1.5	2
87	High-quality all-fluorescent white organic light-emitting diodes obtained by balancing carriers with hole limit layer. Optical Materials, 2022, 123, 111917.	1.7	2
88	Green organic light-emitting diodes with high power efficiency by constructing well-matched device structure to low down operation voltage. Journal of Luminescence, 2022, 245, 118777.	1.5	2
89	High-performance fluorescent organic electroluminescent devices benefit from sensitization of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 17526-17530.	2.7	1
90	Very bright and efficient ITO-free narrow-spectrum micro-cavity top-emitting organic light-emitting diodes with low operation voltage. Journal of Materials Chemistry C, 2022, 10, 3241-3247.	2.7	1

#	Article	IF	CITATIONS
91	High-performance full phosphorescent warm white organic light-emitting diodes with external quantum efficiency of 34.5%. Optical Materials, 2022, 124, 112005.	1.7	1
92	High-performance narrow spectrum green phosphorescent top-emitting organic light-emitting devices with external quantum efficiency up to 38%. Semiconductor Science and Technology, 2022, 37, 015016.	1.0	1
93	Improved Efficiency Roll-Off and Operational Lifetime of Organic Light-Emitting Diodes with a Tetradentate Platinum(II) Complex by Using an n-Doped Electron-Transporting Layer. Molecules, 2021, 26, 1835.	1.7	0
94	Highly Efficient Blue Single-Emitting Layer Phosphorescent Organic Light-Emitting Diodes with a Low Driving Voltage. , 2021, , .		0
95	Highly efficient blue phosphorescent organic light-emitting diodes with low operation voltage. Optics and Laser Technology, 2021, 142, 107229.	2.2	0