Liu Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3713014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Freestanding trimetallic Fe–Co–Ni phosphide nanosheet arrays as an advanced electrode for highâ€performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 79-89.	5.0	42
2	Alkaline-carbonate-templated carbon: Effect of template nature on morphology, oxygen species and supercapacitor performances. Applied Surface Science, 2022, 575, 151771.	3.1	17
3	NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance. Journal of Colloid and Interface Science, 2022, 609, 1-11.	5.0	16
4	Design of mesoporous Ni-Co hydroxides nanosheets stabilized by BO2- for pseudocapacitors with superior performance. Journal of Colloid and Interface Science, 2022, 614, 66-74.	5.0	8
5	Nickel cobalt sulfide coated iron nickel selenide hierarchical nanosheet arrays toward high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 614, 355-366.	5.0	27
6	1D-on-1D core–shell cobalt iron selenide @ cobalt nickel carbonate hydroxide hybrid nanowire arrays as advanced battery-type supercapacitor electrode. Journal of Colloid and Interface Science, 2022, 621, 149-159.	5.0	18
7	A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors. Electrochimica Acta, 2021, 368, 137579.	2.6	56
8	Effect of conjugation level on the performance of porphyrin polymer based supercapacitors. Journal of Energy Storage, 2021, 34, 102018.	3.9	47
9	Synthesis of faradaic-active N,O-doped carbon nanosheets from m-trihydroxybenzene and piperazine for high-performance supercapacitor. Applied Surface Science, 2021, 538, 148040.	3.1	33
10	Coordinative template catalyzed/templated nanocarbon with ultrahigh mesoporosity for high-performance aqueous supercapacitor. Journal of Materials Science, 2021, 56, 5748-5759.	1.7	8
11	High-Volumetric Supercapacitor Performance of Ordered Mesoporous Carbon Electrodes Enabled by the Faradaic-Active Nitrogen Doping and Decrease of Microporosity. ACS Applied Energy Materials, 2021, 4, 1840-1850.	2.5	94
12	Oxidative-polymerization and deoxygenation of mixed phenols to faradaic-oxygen modified mesoporous carbon and its supercapacitive performances. Journal of Energy Storage, 2021, 34, 102198.	3.9	13
13	Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors. Journal of Power Sources, 2021, 506, 230096.	4.0	35
14	Superhydrophilicity and ultrahigh-rate supercapacitor performances enabled by mesoporous carbon doped with conjugated hydroxyl. Journal of Energy Storage, 2021, 43, 103296.	3.9	36
15	Rational synthesis of CoFeP@nickel–manganese sulfide core–shell nanoarrays for hybrid supercapacitors. Dalton Transactions, 2021, 50, 17181-17193.	1.6	8
16	Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 4521-4533.	3.8	44
17	Template-assisted construction of N,O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor. Applied Surface Science, 2020, 509, 144921.	3.1	63
18	Enhancing the energy density of supercapacitors by introducing nitrogen species into hierarchical porous carbon derived from camellia pollen. Ionics, 2020, 26, 2549-2561.	1.2	10

Liu Wan

#	Article	IF	CITATIONS
19	Pyridine-based hypercrosslinked polymers as support materials for palladium photocatalysts and their application in Suzuki–Miyaura coupling reactions. New Journal of Chemistry, 2020, 44, 15202-15208.	1.4	20
20	Template induced self-oxidative polymerization of phenols to mesoporous carbon doped with faradaic active oxygen for high-performance supercapacitor. Microporous and Mesoporous Materials, 2020, 307, 110510.	2.2	17
21	Construction of FeNiP@CoNi-layered double hydroxide hybrid nanosheets on carbon cloth for high energy asymmetric supercapacitors. Journal of Power Sources, 2020, 465, 228293.	4.0	79
22	In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors. Chemical Engineering Journal, 2020, 399, 125778.	6.6	88
23	A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors. Applied Surface Science, 2020, 518, 146265.	3.1	47
24	Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors. Journal of Power Sources, 2019, 438, 227013.	4.0	81
25	One-step synthesis of N, S-codoped porous graphitic carbon derived from lotus leaves for high-performance supercapacitors. Ionics, 2019, 25, 4891-4903.	1.2	17
26	Redox-active mesoporous carbon nanosheet with rich cracks for high-performance electrochemical energy storage. Journal of Alloys and Compounds, 2019, 794, 247-254.	2.8	36
27	Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochimica Acta, 2019, 311, 72-82.	2.6	123
28	Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. Journal of Alloys and Compounds, 2019, 790, 760-771.	2.8	69
29	Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor. Polymer, 2019, 162, 43-49.	1.8	44
30	Novel ZnMoO4/reduced graphene oxide hybrid as a high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 708, 713-721.	2.8	55