Izabela Swiecicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3712735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Frontiers in Microbiology, 2022, 13, 853407.	3.5	7
2	Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn–Pb–Cd-Polluted Waste Heap Area. International Journal of Molecular Sciences, 2021, 22, 2808.	4.1	11
3	Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution. Microbiology Spectrum, 2021, 9, e0031121.	3.0	4
4	First metagenomic report of <i>Borrelia americana</i> and <i>Borrelia carolinensis</i> in Poland – aÂpreliminary study. Annals of Agricultural and Environmental Medicine, 2021, 28, 49-55.	1.0	5
5	Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Frontiers in Microbiology, 2021, 12, 547020.	3.5	10
6	Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 2020, 9, 1002.	3.5	13
7	Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 2020, 743, 140682.	8.0	261
8	Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Scientific Reports, 2020, 10, 11168.	3.3	26
9	Nocardia farcinica as a cause of chronic meningitis – case report. BMC Infectious Diseases, 2020, 20, 56.	2.9	7
10	Potential Enterotoxicity of Phylogenetically Diverse Bacillus cereus Sensu Lato Soil Isolates from Different Geographical Locations. Applied and Environmental Microbiology, 2020, 86, .	3.1	18
11	Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland. Gut Pathogens, 2019, 11, 32.	3.4	24
12	Absence of molecular evidence for Candidatus Neoehrlichia mikurensis presence in symptomatic patients in Poland. Travel Medicine and Infectious Disease, 2019, 32, 101514.	3.0	1
13	Draft Genome Sequences of Proteus mirabilis K1609 and K670: A Model Strains for Territoriality Examination. Current Microbiology, 2019, 76, 144-152.	2.2	3
14	Tick-borne infections and co-infections in patients with non-specific symptoms in Poland. Advances in Medical Sciences, 2018, 63, 167-172.	2.1	20
15	Activity of selected plant extracts against honey bee pathogen Paenibacillus larvae. Apidologie, 2018, 49, 687-704.	2.0	11
16	Royal Jelly Aliphatic Acids Contribute to Antimicrobial Activity of Honey. Journal of Apicultural Science, 2018, 62, 111-123.	0.4	7
17	In vitro study of the antimicrobial activity of European propolis against Paenibacillus larvae. Apidologie, 2017, 48, 411-422.	2.0	9
18	Ribosomal background of the Bacillus cereus group thermotypes. Scientific Reports, 2017, 7, 46430.	3.3	23

IZABELA ŚWIECICKA

#	Article	IF	CITATIONS
19	Comparative EPR studies of free radicals in melanin synthesized by Bacillus weihenstephanensis soil strains. Chemical Physics Letters, 2017, 679, 185-192.	2.6	13
20	Genetic Environment of cry1 Genes Indicates Their Common Origin. Genome Biology and Evolution, 2017, 9, 2265-2275.	2.5	16
21	Infection with <i>Babesia microti</i> in humans with non-specific symptoms in North East Poland. Infectious Diseases, 2016, 48, 537-543.	2.8	37
22	MALDIâ€TOF MS portrait of emetic and nonâ€emetic <i>Bacillus cereus</i> group members. Electrophoresis, 2016, 37, 2235-2247.	2.4	16
23	Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors. Journal of Chemical Ecology, 2016, 42, 475-485.	1.8	39
24	The worldwide distribution of genetically and phylogenetically diverse <scp><i>B</i></scp> <i>acillus cereus</i> isolates harbouring <scp><i>B</i></scp> <i>acillus anthracis</i> â€like plasmids. Environmental Microbiology Reports, 2015, 7, 738-745.	2.4	9
25	Oneâ€day pulsedâ€field gel electrophoresis protocol for rapid determination of emetic <i>Bacillus cereus</i> isolates. Electrophoresis, 2015, 36, 1051-1054.	2.4	4
26	Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland. PLoS ONE, 2015, 10, e0125428.	2.5	48
27	Chemical profile and antimicrobial activity of extractable compounds of Betula litwinowii (Betulaceae) buds. Open Chemistry, 2015, 13, .	1.9	11
28	Growth arrest and rapid capture of select pathogens following magnetic nanoparticle treatment. Colloids and Surfaces B: Biointerfaces, 2015, 131, 29-38.	5.0	29
29	Type II toxin–antitoxin systems are unevenly distributed among Escherichia coli phylogroups. Microbiology (United Kingdom), 2015, 161, 158-167.	1.8	51
30	Chemical composition and antimicrobial activity of Polish herbhoneys. Food Chemistry, 2015, 171, 84-88.	8.2	25
31	Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. International Journal of Nanomedicine, 2014, 9, 2217.	6.7	38
32	First Complete Genome Sequence of Escherichia albertii Strain KF1, a New Potential Human Enteric Pathogen. Genome Announcements, 2014, 2, .	0.8	23
33	Comparative analysis of quantitative reverse transcription real-time PCR and commercial enzyme imunoassays for detection of enterotoxigenic <i>Bacillus thuringiensis</i> isolates. FEMS Microbiology Letters, 2014, 357, 34-39.	1.8	11
34	Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates ofBacillus cereusandBacillus weihenstephanensis. FEMS Microbiology Letters, 2014, 353, 124-131.	1.8	20
35	Role of Structural Changes Induced in Biological Membranes by Hydrolysable Tannins from Sumac Leaves (Rhus typhina L.) in their Antihemolytic and Antibacterial Effects. Journal of Membrane Biology, 2014, 247, 533-540.	2.1	16
36	Modular Genetic Architecture of the Toxigenic Plasmid pIS56-63 Harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056. Polish Journal of Microbiology, 2014, 63, 147-156.	1.7	11

IZABELA ŚWIECICKA

#	Article	IF	CITATIONS
37	Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056. Polish Journal of Microbiology, 2014, 63, 147-56.	1.7	7
38	Germination and proliferation of emetic Bacillus cereus sensu lato strains in milk. Folia Microbiologica, 2013, 58, 529-535.	2.3	8
39	Diversity of thermal ecotypes and potential pathotypes of <i>Bacillus thuringiensis</i> soil isolates. FEMS Microbiology Ecology, 2013, 85, 262-272.	2.7	21
40	Complete Genome Sequence of Bacillus thuringiensis subsp. <i>thuringiensis</i> Strain IS5056, an Isolate Highly Toxic to <i>Trichoplusia ni</i> . Genome Announcements, 2013, 1, e0010813.	0.8	38
41	Eco-Genetic Structure of Bacillus cereus sensu lato Populations from Different Environments in Northeastern Poland. PLoS ONE, 2013, 8, e80175.	2.5	35
42	Characterization ofBacillus thuringiensisisolates from soil and small mammals that harbourvip3Agene homologues. Biocontrol Science and Technology, 2011, 21, 461-473.	1.3	3
43	Cereulide and Valinomycin, Two Important Natural Dodecadepsipeptides with Ionophoretic Activities. Polish Journal of Microbiology, 2010, 59, 3-10.	1.7	26
44	Cereulide and valinomycin, two important natural dodecadepsipeptides with ionophoretic activities. Polish Journal of Microbiology, 2010, 59, 3-10.	1.7	10
45	Natural isolates of <i>Bacillus thuringiensis</i> display genetic and psychrotrophic properties characteristic of <i>Bacillus weihenstephanensis</i> . Journal of Applied Microbiology, 2009, 106, 1967-1975.	3.1	27
46	Sympatric soil communities of <i>Bacillus cereus sensu lato</i> : population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiology Ecology, 2009, 70, 344-355.	2.7	34
47	Family portrait of <i>Bacillus cereus</i> and <i>Bacillus weihenstephanensis</i> cereulideâ€producing strains. Environmental Microbiology Reports, 2009, 1, 177-183.	2.4	93
48	The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiology, 2008, 25, 588-596.	4.2	147
49	Novel Isolate of Bacillus thuringiensis subsp. thuringiensis That Produces a Quasicuboidal Crystal of Cry1Ab21 Toxic to Larvae of Trichoplusia ni. Applied and Environmental Microbiology, 2008, 74, 923-930.	3.1	38
50	Natural occurrence of <i>Bacillus thuringiensis</i> and <i>Bacillus cereus</i> in eukaryotic organisms: a case for symbiosis. Biocontrol Science and Technology, 2008, 18, 221-239.	1.3	43
51	Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio) Tj ETQq1 1 0.78	34314 rgB ⁻ 2.7	Γ/Q_{43} verlock
52	Hemolytic and Nonhemolytic Enterotoxin Genes are Broadly Distributed among Bacillus thuringiensis Isolated from Wild Mammals. Microbial Ecology, 2006, 52, 544-551.	2.8	49
53	The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity. Environmental Microbiology, 2005, 7, 34-39.	3.8	14
54	Characterization of Phages Virulent for Sarothamnus scoparius Bradyrhizobia. Current Microbiology, 2005, 51, 244-249.	2.2	3

IZABELA ŚWIECICKA

#	Article	IF	CITATIONS
55	The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology (United) Tj ETQq1 1	0.784314 1.8	· rgBT /Over
56	Fatal Family Outbreak of Bacillus cereus -Associated Food Poisoning. Journal of Clinical Microbiology, 2005, 43, 4277-4279.	3.9	392
57	Molecular Typing by Pulsed-Field Gel Electrophoresis of Bacillus thuringiensis from Root Voles. Current Microbiology, 2003, 46, 256-260.	2.2	6
58	Properties of Bacillus thuringiensis isolated from bank voles. Journal of Applied Microbiology, 2003, 94, 60-64.	3.1	19
59	Analysis of genetic relationships and antimicrobial susceptibility of Escherichia coli isolated from Clethrionomys glareolus. Journal of General and Applied Microbiology, 2003, 49, 315-320.	0.7	11
60	The occurrence and properties of Bacillus thuringiensis isolated from free-living animals. Letters in Applied Microbiology, 2002, 34, 194-198.	2.2	27
61	Protein profile and biochemical properties ofBacillus circulans isolated from intestines of small free-living animals in Poland. Folia Microbiologica, 2001, 46, 165-171.	2.3	1