Craig Criddle

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3712695/craig-criddle-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 113 191 13,521 h-index g-index citations papers 15,182 8.5 6.43 199 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
191	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works <i>Environmental Science: Water Research and Technology</i> , 2022 , 8, 757-770	4.2	5
190	Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	1
189	Microbes and Climate Change: a Research Prospectus for the Future <i>MBio</i> , 2022 , e0080022	7.8	6
188	The effects of particle clustering on hindered settling in high-concentration particle suspensions. Journal of Fluid Mechanics, 2021 , 920,	3.7	4
187	Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. <i>Frontiers in Astronomy and Space Sciences</i> , 2021 , 8,	3.8	1
186	Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of (Mealworm Larvae). <i>Environmental Science & Environmental Science & Environme</i>	2 7 -2ð3	36 ²³
185	More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant. <i>Green Chemistry</i> , 2021 , 23, 4510-4523	10	5
184	Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences, 2021, 8,	3.8	3
183	Comparison of the properties of segregated layers in a bidispersed fluidized bed to those of a monodispersed fluidized bed. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	2
182	Competing flow and collision effects in a monodispersed liquid fluidized bed at a moderate Archimedes number. <i>Journal of Fluid Mechanics</i> , 2021 , 927,	3.7	2
181	Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale. <i>Water Research</i> , 2021 , 204, 117598	12.5	3
180	Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance. <i>Chemical Engineering Journal</i> , 2021 , 426, 131912	14.7	3
179	Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 739-747	4.2	7
178	Characterization of biodegradation of plastics in insect larvae. <i>Methods in Enzymology</i> , 2021 , 648, 95-12	201.7	14
177	Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions. <i>Environmental Science & Damp; Technology</i> , 2021 , 55, 2016-2026	10.3	3
176	Reply to Santīl et al.: Viscoelastic retardant fluids enable treatments to prevent wildfire on landscapes subject to routine ignitions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5105-5106	11.5	
175	Membrane and Fluid Contactors for Safe and Efficient Methane Delivery in Methanotrophic Bioreactors. <i>Journal of Environmental Engineering, ASCE</i> , 2020 , 146, 03120006	2	6

(2019-2020)

174	Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. <i>Environmental Pollution</i> , 2020 , 266, 115206	9.3	39
173	Retrospective on microbial transformations of halogenated organics. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 512-517	4.3	5
172	Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. <i>Water Research</i> , 2020 , 173, 115575	12.5	11
171	Harnessing salinity gradient energy in coastal stormwater runoff to reduce pathogen loading. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1553-1558	4.2	
170	Metabolic model of nitrite reduction to nitrous oxide coupled to alternating consumption and storage of glycogen and polyhydroxyalkanoate. <i>Bioresource Technology Reports</i> , 2020 , 9, 100370	4.1	2
169	Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. <i>Environment International</i> , 2020 , 145, 106106	12.9	48
168	Impacts of nitrogen-containing coagulants on the nitritation/denitrification of anaerobic digester centrate. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 3451-3459	4.2	5
167	In Vivo Polymerization ("Hard-Wiring") of Bioanodes Enables Rapid Start-Up and Order-of-Magnitude Higher Power Density in a Microbial Battery. <i>Environmental Science & Enp;</i> Technology, 2020 , 54, 14732-14739	10.3	3
166	Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	17
165	Community members in activated sludge as determined by molecular probe technology. <i>Water Research</i> , 2020 , 168, 115104	12.5	4
164	Complex organic particulate artificial sewage (COPAS) as surrogate wastewater in anaerobic assays. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1661-1671	4.2	1
163	Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 20820-20827	11.5	14
162	Uranium sequestration in sediment at an iron-rich contaminated site at Oak Ridge, Tennessee via. bioreduction followed by reoxidation. <i>Journal of Environmental Sciences</i> , 2019 , 85, 156-167	6.4	3
161	Clues to membrane fouling hidden within the microbial communities of membrane bioreactors. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1389-1399	4.2	16
160	Can biotechnology turn the tide on plastics?. Current Opinion in Biotechnology, 2019, 57, 160-166	11.4	13
159	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019 , 4, 1183-1195	26.6	248
158	Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). <i>Environmental Science & Diene amp; Technology</i> , 2019 , 53, 5256-5265	10.3	97
157	Charge-Free Mixing Entropy Battery Enabled by Low-Cost Electrode Materials. ACS Omega, 2019, 4, 117	85 ₉ 11	790

156	Microbial Battery Powered Enzymatic Electrosynthesis for Carbon Capture and Generation of Hydrogen and Formate from Dilute Organics. <i>ACS Energy Letters</i> , 2019 , 4, 2929-2936	20.1	14
155	Niche Differentiation among Three Closely Related Clades at a Full-Scale Activated Sludge Wastewater Treatment Plant and Putative Linkages to Process Performance. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	4
154	Engineering the Dark Food Chain. Environmental Science & Technology, 2019, 53, 2273-2287	10.3	16
153	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	26
152	Decision support toolkit for integrated analysis and design of reclaimed water infrastructure. Water Research, 2018 , 134, 234-252	12.5	14
151	Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. <i>Chemosphere</i> , 2018 , 191, 979-989	8.4	98
150	Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). <i>Chemosphere</i> , 2018 , 212, 262-271	8.4	85
149	Biocomposite Fiber-Matrix Treatments that Enhance In-Service Performance Can Also Accelerate End-of-Life Fragmentation and Anaerobic Biodegradation to Methane. <i>Journal of Polymers and the Environment</i> , 2018 , 26, 1715-1726	4.5	12
148	Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. <i>Environmental Science & Environmental Scienc</i>	10.3	155
147	Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 2018 , 150, 012005	0.3	13
146	Methodology to assess end-of-life anaerobic biodegradation kinetics and methane production potential for composite materials. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 95, 388-	3 ⁸ 94	9
145	Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act-A New Standard Can Facilitate Improved Policy. <i>Environmental Science & Environmental Scien</i>	10.3	81
144	Microplastics pollution and reduction strategies. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	103
143	Assessment of models for anaerobic biodegradation of a model bioplastic: Poly(hydroxybutyrate-co-hydroxyvalerate). <i>Bioresource Technology</i> , 2017 , 227, 205-213	11	21
142	Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter. <i>Nano Energy</i> , 2017 , 39, 499-505	17.1	6
141	Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. <i>AMB Express</i> , 2017 , 7, 118	4.1	38
140	A proposed nomenclature for biological processes that remove nitrogen. <i>Environmental Science:</i> Water Research and Technology, 2017 , 3, 10-17	4.2	18
139	An integrated planning tool for design of recycled water distribution networks. <i>Environmental Modelling and Software</i> , 2016 , 84, 311-325	5.2	8

138	Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. <i>Bioresource Technology</i> , 2016 , 207, 302-7	11	27
137	Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. <i>Process Biochemistry</i> , 2016 , 51, 561-567	4.8	34
136	Poly(hydroxyalkanoate)s from Waste Biomass: A Combined Chemical B iological Approach. <i>ChemistrySelect</i> , 2016 , 1, 2327-2331	1.8	11
135	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4164-72	4.8	18
134	Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. <i>Energy and Environmental Science</i> , 2015 , 8, 3418-3441	35.4	185
133	Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments. <i>Environmental Science & Environmental </i>	10.3	36
132	Use of low cost and easily regenerated Prussian Blue cathodes for efficient electrical energy recovery in a microbial battery. <i>Energy and Environmental Science</i> , 2015 , 8, 546-551	35.4	58
131	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 453-464	5.8	16
130	Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4767-73	4.8	35
129	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. <i>Genome Announcements</i> , 2015 , 3,		1
128	Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). <i>Bioresource Technology</i> , 2015 , 198, 811-8	11	58
127	Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 4723-36	5.7	39
126	Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy. <i>Energy and Environmental Science</i> , 2014 , 7, 2295-2300	35.4	47
125	Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals. <i>Environmental Science & Environmental Science & </i>	10.3	59
124	Disassembly and reassembly of polyhydroxyalkanoates: recycling through abiotic depolymerization and biotic repolymerization. <i>Bioresource Technology</i> , 2014 , 170, 167-174	11	27
123	Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. <i>Environmental Science & Environmental Science </i>	10.3	64
122	Sidestream Treatment with Energy Recovery from Nitrogen Waste: The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO). <i>Proceedings of the Water Environment Federation</i> , 2014 , 2014, 1114-1125		2
121	Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. <i>ACS Nano</i> , 2014 , 8, 11958-65	16.7	24

120	Adaptation of nitrifying microbial biomass to nickel in batch incubations. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 847-57	5.7	7
119	Surge block method for controlling well clogging and sampling sediment during bioremediation. <i>Water Research</i> , 2013 , 47, 6566-73	12.5	8
118	Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. <i>Bioresource Technology</i> , 2013 , 132, 71-7	11	78
117	Nitrogen removal with energy recovery through N2O decomposition. <i>Energy and Environmental Science</i> , 2013 , 6, 241-248	35.4	89
116	Use of on-site bioreactors to estimate the biotransformation rate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) during activated sludge treatment. <i>Chemosphere</i> , 2013 , 92, 702-7	8.4	9
115	Bioaugmentation with Pseudomonas Stutzeri KC for Carbon Tetrachloride Remediation 2013 , 257-288		
114	Magnetically ultraresponsive nanoscavengers for next-generation water purification systems. <i>Nature Communications</i> , 2013 , 4, 1866	17.4	67
113	In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. <i>Environmental Science & Environmental </i>	10.3	66
112	Assessing the scale of resource recovery for centralized and satellite wastewater treatment. <i>Environmental Science & Environmental Science & Environm</i>	10.3	34
111	Microbial battery for efficient energy recovery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 15925-30	11.5	55
110	Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. <i>Bioresource Technology</i> , 2012 , 107, 385-92	11	41
109	Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. <i>Energy and Environmental Science</i> , 2012 , 5, 5265-5270	35.4	255
108	Graphene Iponges as high-performance low-cost anodes for microbial fuel cells. <i>Energy and Environmental Science</i> , 2012 , 5, 6862	35.4	239
107	Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). <i>Environmental Science & Environmental Science & E</i>	10.3	80
106	Chemical and Biological Processes: The Need for Mixing. SERDP and ESTCP Remediation Technology Monograph Series, 2012, 7-52		3
105	Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. <i>Nano Letters</i> , 2011 , 11, 291-6	11.5	350
104	Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions. <i>Environmental Science & Environmental S</i>	10.3	60
103	Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor. <i>Water Research</i> , 2011 , 45, 5476-88	12.5	117

(2010-2011)

102	Estimating reaction rate coefficients within a travel-time modeling framework. <i>Ground Water</i> , 2011 , 49, 209-18	2.4	6
101	Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. <i>Bioresource Technology</i> , 2011 , 102, 9919-26	11	52
100	Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. <i>Microbial Ecology</i> , 2011 , 62, 564-73	4.4	96
99	Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. <i>Energy and Environmental Science</i> , 2011 , 4, 1293	35.4	67
98	Anaerobic biodegradation of the microbial copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Effects of comonomer content, processing history, and semi-crystalline morphology. <i>Polymer</i> , 2011 , 52, 547-556	3.9	26
97	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5063-5063	4.8	4
96	A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5955-65	4.8	81
95	Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 3860-9	4.8	42
94	Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 6012-9	4.8	94
93	Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. <i>ISME Journal</i> , 2010 , 4, 1060-70	11.9	89
92	Combined niche and neutral effects in a microbial wastewater treatment community. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15345-50	11.5	356
91	Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6778-86	4.8	85
90	Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	84
89	Uranium transformations in static microcosms. Environmental Science & Environm	4 2 0.3	42
88	Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces. <i>Water Research</i> , 2010 , 44, 2654-62	12.5	147
87	Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?. <i>Biodegradation</i> , 2010 , 21, 81-95	4.1	22
86	Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. <i>Journal of Environmental Sciences</i> , 2010 , 22, 627-34	6.4	46
85	Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests. Journal of Contaminant Hydrology, 2010, 117, 37-45	3.9	3

84	Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions. <i>Journal of Hazardous Materials</i> , 2010 , 183, 482-9	12.8	19
83	Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. <i>Journal of Membrane Science</i> , 2010 , 364, 331-338	9.6	150
82	Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2009 , 340, 117-132	9.6	58
81	Simple menaquinones reduce carbon tetrachloride and iron (III). <i>Biodegradation</i> , 2009 , 20, 109-16	4.1	12
80	Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. <i>Journal of Applied Microbiology</i> , 2009 , 107, 970-7	4.7	84
79	Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths. <i>ISME Journal</i> , 2009 , 3, 47-64	11.9	81
78	Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. <i>Environmental Microbiology</i> , 2009 , 11, 2310-28	5.2	204
77	GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. <i>Environmental Microbiology</i> , 2009 , 11, 2611-26	5.2	87
76	Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions. <i>Water Research</i> , 2009 , 43, 4652-64	12.5	25
75	Estimating first-order reaction rate coefficient for transport with nonequilibrium linear mass transfer in heterogeneous media. <i>Journal of Contaminant Hydrology</i> , 2008 , 98, 50-60	3.9	6
74	Reassessing authorship of the Book of Mormon using delta and nearest shrunken centroid classification. <i>Literary and Linguistic Computing</i> , 2008 , 23, 465-491		39
73	Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	204
72	Speciation of uranium in sediments before and after in situ biostimulation. <i>Environmental Science & Environmental & E</i>	10.3	103
71	Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 3718-29	4.8	141
70	Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 1107-19	4.9	27
69	Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI). <i>Environmental Science & Eamp; Technology</i> , 2007 , 41, 6528-33	10.3	18
68	In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. <i>Environmental Science & Environmental Science & Env</i>	10.3	166
67	Hydraulic performance analysis of a multiple injection∄xtraction well system. <i>Journal of Hydrology</i> , 2007 , 336, 294-302	6	25

(2006-2007)

66	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. <i>ISME Journal</i> , 2007 , 1, 67-77	11.9	484
65	Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. <i>ISME Journal</i> , 2007 , 1, 714-28	11.9	34
64	Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. <i>Journal of Contaminant Hydrology</i> , 2007 , 92, 129-48	3.9	49
63	Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. <i>Applied Microbiology and Biotechnology</i> , 2007 , 77, 713-21	5.7	52
62	Correlation of functional instability and community dynamics in denitrifying dispersed-growth reactors. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 680-90	4.8	44
61	Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6898	3- 9 84	45
60	Sulfate Requirement for the Growth of U(VI)-Reducing Bacteria in an Ethanol-Fed Enrichment. <i>Bioremediation Journal</i> , 2007 , 11, 21-32	2.3	8
59	Gene capture and random amplification for quantitative recovery of homologous genes. <i>Molecular and Cellular Probes</i> , 2007 , 21, 140-7	3.3	11
58	Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. <i>Environmental Science & Environmental Science & En</i>	10.3	247
57	Stability in a denitrifying fluidized bed reactor. <i>Microbial Ecology</i> , 2006 , 52, 311-21	4.4	32
56	Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. <i>Applied Microbiology and Biotechnology</i> , 2006 , 71, 748-60	5.7	43
55	A parametric transfer function methodology for analyzing reactive transport in nonuniform flow. <i>Journal of Contaminant Hydrology</i> , 2006 , 83, 27-41	3.9	27
54	Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5643-7	4.8	312
53	Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides. <i>Environmental Science & Environmental Sci</i>	10.3	117
52	Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. <i>Environmental Science & Environmental & Environmen</i>	10.3	253
51	Phylogenetic and functional biomakers as indicators of bacterial community responses to mixed-waste contamination. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	37
50	Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. <i>Environmental Science & Environmental Science & Environm</i>	10.3	142
49	A nested-cell approach for in situ remediation. <i>Ground Water</i> , 2006 , 44, 266-74	2.4	49

48	Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. <i>Biodegradation</i> , 2006 , 17, 303-16	4.1	50
47	Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 39	86 ⁻¹ 95 ³	223
46	Uranium (VI) Reduction by Denitrifying Biomass. <i>Bioremediation Journal</i> , 2005 , 9, 49-61	2.3	20
45	Mass-transfer limitations for nitrate removal in a uranium-contaminated aquifer. <i>Environmental Science & Environmental Scienc</i>	10.3	34
44	Quantitative determination of perfluorochemicals in sediments and domestic sludge. <i>Environmental Science & Environmental Scie</i>	10.3	433
43	Bioreduction of uranium in a contaminated soil column. <i>Environmental Science & Environmental Science </i>	10.3	122
42	Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid-uranium waste. <i>FEMS Microbiology Ecology</i> , 2005 , 53, 417-28	4.3	81
41	Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7453-60	4.8	114
40	Bioengineering for the In Situ Remediation of Metals 2005 , 493-520		2
39	Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4950-60	4.8	42
38	A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1. <i>Applied Microbiology and Biotechnology</i> , 2004 , 63, 571-7	5.7	28
37	Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. <i>BioTechniques</i> , 2003 , 34, 790-4, 796, 798 passim	2.5	204
36	Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 627-37	4.9	132
35	Biocurtain Design Using Reactive Transport Models. <i>Ground Water Monitoring and Remediation</i> , 2002 , 22, 113-123	1.4	3
34	Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. <i>Environmental Science & Environmental & Envir</i>	10.3	55
33	Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns. <i>Water Resources Research</i> , 2002 , 38, 4-1-4-13	5.4	24
32	Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. <i>Journal of Molecular Microbiology and Biotechnology</i> , 2002 , 4, 151-61	0.9	16
31	The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions. <i>Applied Microbiology and Biotechnology</i> , 2001 , 56, 531-8	5.7	27

(1993-2000)

30	Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 4058-	6 1 .8	277
29	Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 4050-	7 ^{4.8}	139
28	How stable is stable? Function versus community composition. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 3697-704	4.8	408
27	Use of Bioaugmentation for Continuous Removal of Carbon Tetrachloride in Model Aquifer Columns. <i>Environmental Engineering Science</i> , 1999 , 16, 475-485	2	14
26	Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. <i>Archives of Microbiology</i> , 1999 , 171, 424-9	3	25
25	Motility-Enhanced Bioremediation of Carbon Tetrachloride-Contaminated Aquifer Sediments. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	48
24	Pilot-Scale Evaluation of Bioaugmentation for In-Situ Remediation of a Carbon Tetrachloride-Contaminated Aquifer. <i>Environmental Science & Environmental Science & Environment</i>	10.3	79
23	Defluorination of Organofluorine Sulfur Compounds by Pseudomonas Sp. Strain D2. <i>Environmental Science & Environmental Science</i>	10.3	172
22	Fluorinated Organics in the Biosphere. Environmental Science & Environmental S	10.3	572
21	Effects of a long-term periodic substrate perturbation on an anaerobic community. <i>Water Research</i> , 1997 , 31, 2195-2204	12.5	44
20	Experimental evaluation of a model for cometabolism: Prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. <i>Biotechnology and Bioengineering</i> , 1997 , 56, 492-501	4.9	39
19	Bench-Scale Evaluation of Bioaugmentation to Remediate Carbon Tetrachloride-Contaminated Aquifer Materials. <i>Ground Water</i> , 1996 , 34, 358-367	2.4	27
18	Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene. <i>Applied and Environmental Microbiology</i> , 1996 , 62, 2953-60	4.8	16
17	Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. <i>Biodegradation</i> , 1995 , 6, 1-9	4.1	42
16	Metabolism and cometabolism of halogenated C-1 and C-2 hydrocarbons. <i>Progress in Industrial Microbiology</i> , 1995 , 32, 65-102		5
15	Mass transfer and temperature effects on substrate utilization in brewery granules. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 465-75	4.9	17
14	Localization and Characterization of the Carbon Tetrachloride Transformation Activity of Pseudomonas sp. Strain KC. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 758-62	4.8	47
13	The kinetics of cometabolism. <i>Biotechnology and Bioengineering</i> , 1993 , 41, 1048-56	4.9	124

12	Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. <i>Biotechnology and Bioengineering</i> , 1993 , 41, 1057-65	4.9	166
11	Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. <i>Applied and Environmental Microbiology</i> , 1993 , 59, 2126-31	4.8	44
10	Electrolytic model system for reductive dehalogenation in aqueous environments. <i>Environmental Science & Environmental Science</i>	10.3	112
9	Microbial Processes in Porous Media 1991 , 639-691		21
8	Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 3240-6	4.8	112
7	Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 3247-54	4.8	65
6	ES Critical Reviews: Transformations of halogenated aliphatic compounds. <i>Environmental Science & Environmental Science</i>	10.3	824
5	Reduction of hexachloroethane to tetrachloroethylene in groundwater. <i>Journal of Contaminant Hydrology</i> , 1986 , 1, 133-142	3.9	33
4	CFD-accelerated bioreactor optimization: reducing the hydrodynamic parameter space. <i>Environmental Science: Water Research and Technology</i> ,	4.2	О
3	SARS-CoV-2 RNA is enriched by orders of magnitude in solid relative to liquid wastewater at publicly owned treatment works		3
2	Towards a Biomanufactory on Mars		4
1	Ethane-dependent synthesis of polyhydroxyalkanoates by the obligate methanotrophMethylocystis parvusOBBP		1