
Celeste Sagui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3712524/publications.pdf Version: 2024-02-01

CELESTE SACUL

#	Article	IF	CITATIONS
1	Novel eGZ-motif formed by regularly extruded guanine bases in a left-handed Z-DNA helix as a major motif behind CGG trinucleotide repeats. Nucleic Acids Research, 2022, 50, 4860-4876.	6.5	10
2	Structure of a pathologic amyloid nucleus determined by rational genetic deconstruction of an intracellular nucleation barrier. FASEB Journal, 2022, 36, .	0.2	0
3	The F19W mutation reduces the binding affinity of the transmembrane Aβ11–40 trimer to the membrane bilayer. RSC Advances, 2021, 11, 2664-2676.	1.7	2
4	Molecular conformations and dynamics of nucleotide repeats associated with neurodegenerative diseases: double helices and CAG hairpin loops. Computational and Structural Biotechnology Journal, 2021, 19, 2819-2832.	1.9	11
5	Construction of DNA/RNA Triplex Helices Based on GAA/TTC Trinucleotide Repeats. Bio-protocol, 2021, 11, e4155.	0.2	2
6	Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Research, 2020, 48, 9899-9917.	6.5	25
7	Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Research, 2020, 48, 2232-2245.	6.5	39
8	Structure and Dynamics of DNA and RNA Double Helices Obtained from the CCG and GGC Trinucleotide Repeats. Journal of Physical Chemistry B, 2018, 122, 4491-4512.	1.2	16
9	Structural and Dynamical Characterization of DNA and RNA Quadruplexes Obtained from the GGGGCC and GGGCCT Hexanucleotide Repeats Associated with C9FTD/ALS and SCA36 Diseases. ACS Chemical Neuroscience, 2018, 9, 1104-1117.	1.7	22
10	E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Research, 2018, 46, 942-955.	6.5	19
11	Structure and Dynamics of DNA and RNA Double Helices Obtained from the GGGGCC and CCCCGG Hexanucleotide Repeats That Are the Hallmark of C9FTD/ALS Diseases. ACS Chemical Neuroscience, 2017, 8, 578-591.	1.7	31
12	Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats. Biophysical Journal, 2017, 113, 19-36.	0.2	19
13	Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse. Journal of Chemical Physics, 2016, 144, 145101.	1.2	6
14	Stability and Ion Distributions Around Left- and Right-Handed DNA and RNA Duplexes: A Comparative Study. Biophysical Journal, 2016, 110, 407a.	0.2	1
15	Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses. Physical Chemistry Chemical Physics, 2016, 18, 11951-11958.	1.3	9
16	Amyloid Properties of Asparagine and Clutamine in Prion-like Proteins. ACS Chemical Neuroscience, 2016, 7, 576-587.	1.7	30
17	Picosecond dissociation of amyloid fibrils with infrared laser: A nonequilibrium simulation study. Journal of Chemical Physics, 2015, 143, 155101.	1.2	41
18	The Adaptively Biased Molecular Dynamics method revisited: New capabilities and an application. Journal of Physics: Conference Series, 2015, 640, 012020.	0.3	12

#	Article	IF	CITATIONS
19	Structural Determinants of Polyglutamine Protofibrils and Crystallites. ACS Chemical Neuroscience, 2015, 6, 632-645.	1.7	12
20	Picosecond melting of peptide nanotubes using an infrared laser: a nonequilibrium simulation study. Physical Chemistry Chemical Physics, 2015, 17, 27275-27280.	1.3	14
21	Secondary structure assignment for conformationally irregular peptides: Comparison between DSSP, STRIDE and KAKSI. Journal of Molecular Graphics and Modelling, 2015, 55, 72-84.	1.3	40
22	Investigating rare events with nonequilibrium work measurements. II. Transition and reaction rates. Journal of Chemical Physics, 2014, 140, 034115.	1.2	13
23	Investigating rare events with nonequilibrium work measurements. I. Nonequilibrium transition path probabilities. Journal of Chemical Physics, 2014, 140, 034114.	1.2	14
24	Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Research, 2014, 42, 13981-13996.	6.5	53
25	Classical Electrostatics for Biomolecular Simulations. Chemical Reviews, 2014, 114, 779-814.	23.0	229
26	The gp41659–671HIV-1 Antibody Epitope: A Structurally Challenging Small Peptide. Journal of Physical Chemistry B, 2014, 118, 69-80.	1.2	7
27	Recipes for Free Energy Calculations in Biomolecular Systems. Methods in Molecular Biology, 2013, 924, 313-337.	0.4	6
28	Binding Polymorphism in the DNA Bound State of the Pdx1 Homeodomain. PLoS Computational Biology, 2013, 9, e1003160.	1.5	9
29	Reaction path ensemble of the B–Z-DNA transition: a comprehensive atomistic study. Nucleic Acids Research, 2013, 41, 33-43.	6.5	48
30	Are Long-Range Structural Correlations Behind the Aggregration Phenomena of Polyglutamine Diseases?. PLoS Computational Biology, 2012, 8, e1002501.	1.5	18
31	A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides. Biophysical Journal, 2011, 100, 1083-1093.	0.2	24
32	PPII Propensity of Multiple-Guest Amino Acids in a Proline-Rich Environment. Journal of Physical Chemistry B, 2011, 115, 8645-8656.	1.2	17
33	Calculating relative transition rates with driven nonequilibrium simulations. Chemical Physics Letters, 2011, 518, 109-113.	1.2	18
34	The αâ€sheet: A missingâ€inâ€action secondary structure?. Proteins: Structure, Function and Bioinformatics, 2011, 79, 937-946.	1.5	19
35	Free energy and structure of polyproline peptides: An ab initio and classical molecular dynamics investigation. International Journal of Quantum Chemistry, 2010, 110, 2865-2879.	1.0	16
36	Dimerization free energy of vancomycinâ€group antibiotics and the cooperative effect: A density functional approach. International Journal of Quantum Chemistry, 2010, 110, 2894-2902.	1.0	2

#	Article	IF	CITATIONS
37	Conformational free energies of methyl-α-L-iduronic and methyl-β-D-glucuronic acids in water. Journal of Chemical Physics, 2010, 132, 104108.	1.2	49
38	A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. Journal of Chemical Physics, 2010, 133, 125104.	1.2	32
39	Conformations and free energy landscapes of polyproline peptides. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20746-20751.	3.3	92
40	Adaptively biased molecular dynamics: An umbrella sampling method with a timeâ€dependent potential. International Journal of Quantum Chemistry, 2009, 109, 3666-3678.	1.0	35
41	Chapter 2 Electrostatics in Biomolecular Simulations: Where Are We Now and Where Are We Heading?. Current Topics in Membranes, 2008, 60, 49-89.	0.5	62
42	Amino Acid Adsorption on the Si(100) Surface:  The Case of Glycine. Journal of Physical Chemistry C, 2008, 112, 2640-2648.	1.5	11
43	Adaptively biased molecular dynamics for free energy calculations. Journal of Chemical Physics, 2008, 128, 134101.	1.2	168
44	Theoretical Investigation of the Interaction of Glycine with Diamond C(100) and C(111) (2 × 1) Surfaces. Journal of Physical Chemistry C, 2007, 111, 12760-12767.	1.5	2
45	Deprotonation of Solvated Formic Acid:Â Carâ~'Parrinello and Metadynamics Simulations. Journal of Physical Chemistry B, 2006, 110, 2325-2331.	1.2	51
46	The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. Journal of Chemical Physics, 2006, 125, 204909.	1.2	74
47	Molecular Dynamics Simulations of DNA with Polarizable Force Fields:Â Convergence of an Ideal B-DNA Structure to the Crystallographic Structure. Journal of Physical Chemistry B, 2006, 110, 11571-11581.	1.2	65
48	Molecular dynamics simulations of polarizable DNA in crystal environment. International Journal of Quantum Chemistry, 2006, 106, 3260-3269.	1.0	12
49	Surface solvation for an ion in a water cluster. Journal of Chemical Physics, 2005, 122, 024513.	1.2	78
50	Exploring Intramolecular Reactions in Complex Systems with Metadynamics:Â The Case of the Malonate Anions. Journal of Physical Chemistry A, 2005, 109, 7682-7687.	1.1	16
51	New and Exotic Self-Organized Patterns for Modulated Nanoscale Systems. Nano Letters, 2005, 5, 389-395.	4.5	5
52	Quantum Simulations of the Structure and Binding of Glycopeptide Antibiotic Aglycons to Cell Wall Analogues. Journal of Physical Chemistry B, 2005, 109, 20588-20596.	1.2	10
53	Ab initio calculation of electrostatic multipoles with Wannier functions for large-scale biomolecular simulations. Journal of Chemical Physics, 2004, 120, 4530-4544.	1.2	31
54	First Principles Investigation of Vancomycin and Teicoplanin Binding to Bacterial Cell Wall Termini. Journal of the American Chemical Society, 2004, 126, 8384-8385.	6.6	25

#	Article	IF	CITATIONS
55	Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer in crystal environment: Comparison of atomic point-charge, extra-point, and polarizable force fields. Journal of Chemical Physics, 2004, 121, 6998-7008.	1.2	36
56	Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations. Journal of Chemical Physics, 2004, 120, 73-87.	1.2	207
57	Calculation of ionic charging free energies in simulation systems with atomic charges, dipoles, and quadrupoles. Journal of Chemical Physics, 2003, 119, 7621-7632.	1.2	20
58	Multigrid methods for classical molecular dynamics simulations of biomolecules. Journal of Chemical Physics, 2001, 114, 6578-6591.	1.2	119
59	Liquid-crystal phases of capped carbon nanotubes. Physical Review B, 2001, 63, .	1.1	55
60	Efficient Treatment of Fixed and Induced Dipolar Interactions. Materials Research Society Symposia Proceedings, 2000, 653, .	0.1	0
61	Two- and three-dimensional simulations of the phase separation of elastically coherent binary alloys subject to external stresses. Physical Review B, 2000, 62, 3160-3168.	1.1	19
62	Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. Journal of Chemical Physics, 2000, 113, 10913-10927.	1.2	394
63	Efficient Treatment of Fixed and Induced Dipolar Interactions. Materials Research Society Symposia Proceedings, 2000, 653, 1.	0.1	0
64	Large-scale simulations of phase separation of elastically coherent binary alloy systems. Physical Review B, 1999, 59, 8646-8659.	1.1	52
65	MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES: Long-Range Electrostatic Effects. Annual Review of Biophysics and Biomolecular Structure, 1999, 28, 155-179.	18.3	552
66	Theory of nucleation and growth during phase separation. Physical Review E, 1999, 59, 4175-4187.	0.8	53
67	Phase Separation and Elastic Fields: Three Dimensional Simulations of a Phase Field Model. Materials Research Society Symposia Proceedings, 1999, 580, 21.	0.1	0
68	P3M and PME: A comparison of the two methods. , 1999, , .		19
69	Three-dimensional simulations of Ostwald ripening with elastic effects. Physical Review E, 1998, 58, R4092-R4095.	0.8	27
70	Elastic effects in the foaming of thermoplastics. Physical Review E, 1998, 58, 4654-4657.	0.8	19
71	Nucleation and growth: Decay of a metastable state. Physical Review E, 1997, 56, R21-R24.	0.8	22
72	Spinodal decomposition in an order-disorder transition: Effect of interfacial properties. Physical Review E, 1996, 53, 5101-5105.	0.8	9

#	Article	IF	CITATIONS
73	Kinetics of an order-disorder phase transition with topological defects. Physical Review E, 1996, 54, 4775-4781.	0.8	0
74	Kinetics of phase ordering in systems with competing interactions. Journal of Magnetism and Magnetic Materials, 1995, 149, 87-92.	1.0	1
75	Effects of long-range repulsive interactions on Ostwald ripening. Physical Review E, 1995, 52, 2822-2840.	0.8	24
76	Ostwald Ripening in Systems with Competing Interactions. Physical Review Letters, 1995, 74, 1119-1122.	2.9	48
77	Late-stage kinetics of systems with competing interactions quenched into the hexagonal phase. Physical Review E, 1995, 52, 2807-2821.	0.8	34
78	Spinodal decomposition in an order-disorder phase transition with elastic fields. Physical Review E, 1994, 50, 4865-4879.	0.8	73
79	Kinetics of phase separation in two-dimensional systems with competing interactions. Physical Review E, 1994, 49, 2225-2244.	0.8	80
80	Kinetics of topological defects in systems with competing interactions. Physical Review Letters, 1993, 71, 3995-3998.	2.9	46