Kenji Mizumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3711643/publications.pdf Version: 2024-02-01

KENII MIZUMOTO

#	Article	IF	CITATIONS
1	COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infectious Diseases of Poverty, 2021, 10, 11.	3.7	74
2	Estimation of the Actual Incidence of Coronavirus Disease (COVID-19) in Emergent Hotspots: The Example of Hokkaido, Japan during February–March 2020. Journal of Clinical Medicine, 2021, 10, 2392.	2.4	9
3	Characterizing all-cause excess mortality patterns during COVID-19 pandemic in Mexico. BMC Infectious Diseases, 2021, 21, 432.	2.9	32
4	Harnessing testing strategies and public health measures to avert COVID-19 outbreaks during ocean cruises. Scientific Reports, 2021, 11, 15482.	3.3	4
5	Early epidemiological assessment of the transmission potential and virulence of coronavirus disease 2019 (COVID-19) in Wuhan City, China, January–February, 2020. BMC Medicine, 2020, 18, 217.	5.5	55
6	Estimating Risk for Death from Coronavirus Disease, China, January–February 2020. Emerging Infectious Diseases, 2020, 26, 1251-1256.	4.3	166
7	Effect of a wet market on coronavirus disease (COVID-19) transmission dynamics in China, 2019–2020. International Journal of Infectious Diseases, 2020, 97, 96-101.	3.3	34
8	Estimating the Risk of COVID-19 Death during the Course of the Outbreak in Korea, February–May 2020. Journal of Clinical Medicine, 2020, 9, 1641.	2.4	31
9	Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infectious Disease Modelling, 2020, 5, 264-270.	1.9	222
10	The COVID-19 pandemic in the USA: what might we expect?. Lancet, The, 2020, 395, 1093-1094.	13.7	96
11	Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. International Journal of Infectious Diseases, 2020, 94, 116-118.	3.3	112
12	Risk of death by age and gender from CoVID-19 in Peru, March-May, 2020. Aging, 2020, 12, 13869-13881.	3.1	52
13	Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 2020, 25, .	7.0	1,890
14	Interaction Among Influenza Viruses A/H1N1, A/H3N2, and B in Japan. International Journal of Environmental Research and Public Health, 2019, 16, 4179.	2.6	6
15	Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180272.	4.0	20
16	Spatial variability in the reproduction number of Ebola virus disease, Democratic Republic of the Congo, January–September 2019. Eurosurveillance, 2019, 24, .	7.0	10
17	Excess mortality patterns during 1918–1921 influenza pandemic in the state of Arizona, USA. Annals of Epidemiology, 2018, 28, 273-280.	1.9	29
18	Natality Decline and Spatial Variation in Excess Death Rates During the 1918–1920 Influenza Pandemic in Arizona, United States. American Journal of Epidemiology, 2018, 187, 2577-2584.	3.4	22

Келјі Мізимото

#	Article	IF	CITATIONS
19	Transmission potential of modified measles during an outbreak, Japan, March‒May 2018. Eurosurveillance, 2018, 23, .	7.0	33
20	Assessing the transmission dynamics of measles in Japan, 2016. Epidemics, 2017, 20, 67-72.	3.0	22
21	Preliminary estimation of the basic reproduction number of Zika virus infection during Colombia epidemic, 2015–2016. Travel Medicine and Infectious Disease, 2016, 14, 274-276.	3.0	45
22	ldentifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis. BMJ Open, 2016, 6, e009936.	1.9	37
23	Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theoretical Biology and Medical Modelling, 2016, 13, 20.	2.1	36
24	A theoretical estimate of the risk of microcephaly during pregnancy with Zika virus infection. Epidemics, 2016, 15, 66-70.	3.0	32
25	Transmission potential of Zika virus infection in the South Pacific. International Journal of Infectious Diseases, 2016, 45, 95-97.	3.3	91
26	Estimating risks of importation and local transmission of Zika virus infection. PeerJ, 2016, 4, e1904.	2.0	48
27	Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015. BMC Medicine, 2015, 13, 228.	5.5	37
28	Estimating the risk of Middle East respiratory syndrome (MERS) death during the course of the outbreak in the Republic of Korea, 2015. International Journal of Infectious Diseases, 2015, 39, 7-9.	3.3	42
29	Investigating the immunizing effect of the rubella epidemic in Japan, 2012-14. International Journal of Infectious Diseases, 2015, 38, 16-18.	3.3	9
30	Cost-effective length and timing of school closure during an influenza pandemic depend on the severity. Theoretical Biology and Medical Modelling, 2014, 11, 5.	2.1	17
31	How to interpret the transmissibility of novel influenza A(H7N9): an analysis of initial epidemiological data of human cases from China. Theoretical Biology and Medical Modelling, 2013, 10, 30.	2.1	34
32	Effectiveness of antiviral prophylaxis coupled with contact tracing in reducing the transmission of the influenza A (H1N1-2009): a systematic review. Theoretical Biology and Medical Modelling, 2013, 10, 4.	2.1	13
33	Age-Dependent Estimates of the Epidemiological Impact of Pandemic Influenza (H1N1-2009) in Japan. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	1.3	18
34	Contact behaviour of children and parental employment behaviour during school closures against the pandemic influenza A (H1N1-2009) in Japan. Journal of International Medical Research, 2013, 41, 716-724.	1.0	22
35	Vaccination and Clinical Severity: Is the Effectiveness of Contact Tracing and Case Isolation Hampered by Past Vaccination?. International Journal of Environmental Research and Public Health, 2013, 10, 816-829.	2.6	7