Liqun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3711322/publications.pdf

Version: 2024-02-01

110170 87723 4,628 102 38 64 h-index citations g-index papers 104 104 104 7182 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quaternary ammonium functionalized cationic polythiophene for the detection and imaging of gram-positive bacteria. Polymer Bulletin, 2022, 79, 2747-2761.	1.7	6
2	Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. Journal of Materials Chemistry B, 2022, 10, 2296-2315.	2.9	46
3	<scp>Polyurethaneâ€based</scp> composites with promising antibacterial properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	24
4	Surface co-deposition of polypyrrole nanoparticles and tannic acid for photothermal bacterial eradication. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112381.	2.5	7
5	Phytic Acid-Promoted rapid fabrication of natural polypeptide coatings for multifunctional applications. Chemical Engineering Journal, 2022, 440, 135917.	6.6	14
6	Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomaterials Science, 2022, 10, 3006-3016.	2.6	10
7	Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomaterials Science, 2021, 9, 2244-2254.	2.6	21
8	Robust anti-infective multilayer coatings with rapid self-healing property. Materials Science and Engineering C, 2021, 121, 111828.	3.8	9
9	UV-Assisted Deposition of Antibacterial Ag–Tannic Acid Nanocomposite Coating. ACS Applied Materials & amp; Interfaces, 2021, 13, 20708-20717.	4.0	45
10	Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111592.	2.5	29
11	Mussel Adhesive Mimetic Silk Sericin Prepared by Enzymatic Oxidation for the Construction of Antibacterial Coatings. ACS Biomaterials Science and Engineering, 2021, 7, 3379-3388.	2.6	11
12	In situ preparation of porous metal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111920.	2.5	31
13	One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens. Chemical Engineering Journal, 2021, 421, 130005.	6.6	41
14	Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated "nanoknife―effect and photodynamic/CO gas therapy. Biomaterials, 2021, 277, 121084.	5.7	30
15	Improvement of antibacterial activity of hydrothermal treated TC4 substrate through an in-situ grown TiO2/g-C3N4 Z-scheme heterojunction film. Journal of Alloys and Compounds, 2020, 842, 155612.	2.8	19
16	Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification. Biomaterials Science, 2020, 8, 2120-2128.	2.6	19
17	Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application. Colloids and Interface Science Communications, 2020, 35, 100241.	2.0	19
18	Green synthesis of perylene diimide-based nanodots for carbon dioxide sensing, antibacterial activity prediction and bacterial discrimination. Dyes and Pigments, 2020, 176, 108245.	2.0	2

#	Article	IF	CITATIONS
19	A maltoheptaose-decorated BODIPY photosensitizer for photodynamic inactivation of Gram-positive bacteria. New Journal of Chemistry, 2019, 43, 15057-15065.	1.4	8
20	Highly sensitive aflatoxin B1 sensor based on DNA-guided assembly of fluorescent probe and TdT-assisted DNA polymerization. Food Chemistry, 2019, 294, 19-26.	4.2	22
21	Hydrothermal derived protoporphyrin IX nanoparticles for inactivation and imaging of bacteria strains. Journal of Colloid and Interface Science, 2019, 549, 72-79.	5.0	23
22	Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application. Materials Science and Engineering C, 2019, 98, 649-656.	3.8	49
23	Chitosan-Based Peptidopolysaccharides as Cationic Antimicrobial Agents and Antibacterial Coatings. Biomacromolecules, 2018, 19, 2156-2165.	2.6	108
24	Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. Journal of Colloid and Interface Science, 2018, 514, 733-739.	5.0	44
25	pH-Sensitive Zwitterionic Polymer as an Antimicrobial Agent with Effective Bacterial Targeting. ACS Biomaterials Science and Engineering, 2018, 4, 40-46.	2.6	45
26	pH-Sensitive Theranostic Nanoparticles for Targeting Bacteria with Fluorescence Imaging and Dual-Modal Antimicrobial Therapy. ACS Applied Nano Materials, 2018, 1, 6187-6196.	2.4	27
27	Natural polyphenols as versatile platforms for material engineering and surface functionalization. Progress in Polymer Science, 2018, 87, 165-196.	11.8	225
28	A tetraphenylethene and maltoheptaose conjugate with aggregation-induced emission (AIE) characteristic for temperature sensors. New Journal of Chemistry, 2018, 42, 14709-14712.	1.4	14
29	Biomimetic Anchors for Antifouling and Antibacterial Polymeric Coatings. ACS Symposium Series, 2018, , 233-261.	0.5	1
30	Recent Developments in Controlled Release of Antibiotics. Current Pharmaceutical Design, 2018, 24, 911-925.	0.9	12
31	Lanthanide ions-induced formation of hierarchical and transparent polysaccharide hybrid films. Carbohydrate Polymers, 2017, 163, 28-33.	5.1	7
32	Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial \hat{l} ±-polylysine. Polymer Chemistry, 2017, 8, 3364-3373.	1.9	67
33	Preparation of mechanically-tough and thermo-responsive polyurethane-poly(ethylene glycol) hydrogels. Reactive and Functional Polymers, 2017, 117, 81-88.	2.0	17
34	Facile Synthesis of N, B-Doped Carbon Dots and Their Application for Multisensor and Cellular Imaging. Industrial & Document (1988) amp; Engineering Chemistry Research, 2017, 56, 3905-3912.	1.8	60
35	Tea Stains-Inspired Antifouling Coatings Based on Tannic Acid-Functionalized Agarose. ACS Sustainable Chemistry and Engineering, 2017, 5, 3055-3062.	3.2	37
36	An antimicrobial peptide with an aggregation-induced emission (AIE) luminogen for studying bacterial membrane interactions and antibacterial actions. Chemical Communications, 2017, 53, 3315-3318.	2.2	40

#	Article	IF	CITATIONS
37	Vancomycin-conjugated polythiophene for the detection and imaging of Gram-positive bacteria. Journal of Materials Chemistry B, 2017, 5, 8814-8820.	2.9	14
38	Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation. Journal of Colloid and Interface Science, 2017, 506, 659-668.	5.0	89
39	Antifouling and Antimicrobial Coatings from Zwitterionic and Cationic Binary Polymer Brushes Assembled via "Click―Reactions. Industrial & Engineering Chemistry Research, 2017, 56, 14479-14488.	1.8	46
40	Preparation of thermoresponsive fluorescent carbon dots for cellular imaging. Polymer International, 2017, 66, 92-97.	1.6	9
41	One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. Journal of Colloid and Interface Science, 2017, 485, 167-174.	5.0	145
42	Conjugation of Lectin to Poly(l̂µ-caprolactone)-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery. Polymers, 2016, 8, 379.	2.0	14
43	Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	10
44	Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates. Journal of Colloid and Interface Science, 2016, 475, 8-16.	5.0	13
45	A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosensors and Bioelectronics, 2016, 81, 125-130.	5.3	69
46	PEG-based hydrogels prepared by catalyst-free thiol–yne addition and their post-antibacterial modification. Biomaterials Science, 2016, 4, 1663-1672.	2.6	36
47	Antifouling, Antimicrobial, and Antibiocorrosion Multilayer Coatings Assembled by Layer-by-layer Deposition Involving Host–Guest Interaction. Industrial & Engineering Chemistry Research, 2016, 55, 10906-10915.	1.8	36
48	Selective removal of cationic dye from aqueous solution by low-cost adsorbent using phytic acid modified wheat straw. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 91-98.	2.3	45
49	Wellâ€Defined Poly(ethylene glycol) Hydrogels with Enhanced Mechanical Performance Prepared by Thermally Induced Copperâ€Catalyzed Azide–Alkyne Cycloaddition. Macromolecular Materials and Engineering, 2016, 301, 1374-1382.	1.7	15
50	Conjugation of Polyphosphoester and Antimicrobial Peptide for Enhanced Bactericidal Activity and Biocompatibility. Biomacromolecules, 2016, 17, 4037-4044.	2.6	43
51	Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. ACS Sustainable Chemistry and Engineering, 2016, 4, 4264-4272.	3.2	39
52	Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse―for Potentiating Antibiotic Activity. Pharmaceutical Research, 2016, 33, 1161-1174.	1.7	19
53	Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition. Colloids and Surfaces B: Biointerfaces, 2016, 141, 65-73.	2.5	15
54	Antifouling Coatings via Tethering of Hyperbranched Polyglycerols on Biomimetic Anchors. Industrial & Engineering Chemistry Research, 2016, 55, 1890-1901.	1.8	42

#	Article	IF	CITATIONS
55	Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. RSC Advances, 2016, 6, 14809-14818.	1.7	53
56	Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. European Journal of Pharmaceutical Sciences, 2016, 84, 103-115.	1.9	29
57	Preparation of well-defined fibrous hydrogels via electrospinning and in situ "click chemistry― RSC Advances, 2016, 6, 27871-27878.	1.7	7
58	Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polymer Chemistry, 2016, 7, 493-501.	1.9	68
59	PEGylated Fluorescent Nanoparticles from One-Pot Atom Transfer Radical Polymerization and "Click Chemistry― Polymers, 2015, 7, 2119-2130.	2.0	5
60	Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. Journal of Materials Science, 2015, 50, 5466-5474.	1.7	40
61	Tea Stains-Inspired Initiator Primer for Surface Grafting of Antifouling and Antimicrobial Polymer Brush Coatings. Biomacromolecules, 2015, 16, 723-732.	2.6	122
62	Quaternized poly(2-(dimethylamino)ethyl methacrylate)-grafted agarose copolymers for multipurpose antibacterial applications. RSC Advances, 2015, 5, 61742-61751.	1.7	20
63	Antifouling Coatings of Catecholamine Copolymers on Stainless Steel. Industrial & Engineering Chemistry Research, 2015, 54, 5959-5967.	1.8	25
64	Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors. Nanotechnology, 2015, 26, 345401.	1.3	20
65	Stimuli-responsive hydrogels prepared by simultaneous "click chemistry―and metal–ligand coordination. RSC Advances, 2015, 5, 18242-18251.	1.7	17
66	Ruthenium(II)–terpyridine complexes-containing glyconanoparticles for one- and two-photon excited fluorescence imaging. European Polymer Journal, 2015, 71, 279-288.	2.6	3
67	The large electrochemical capacitance of nitrogen-doped mesoporous carbon derived from egg white by using a ZnO template. RSC Advances, 2015, 5, 98177-98183.	1.7	19
68	PEGylated Metalloporphyrin Nanoparticles as a Promising Catalyst for the Heterogeneous Oxidation of Cyclohexene in Water. Macromolecular Chemistry and Physics, 2015, 216, 417-426.	1.1	6
69	The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network. Applied Surface Science, 2014, 320, 818-828.	3.1	6
70	A Well-Defined Amphiphilic Polymer Conetwork from Sequence Control of the Cross-Linking in Polymer Chains. Industrial & Engineering Chemistry Research, 2014, 53, 19239-19248.	1.8	9
71	High strength biocompatible PEG single-network hydrogels. RSC Advances, 2014, 4, 25241-25250.	1.7	16
72	Layer-by-layer deposition of antifouling coatings on stainless steel via catechol-amine reaction. RSC Advances, 2014, 4, 32335-32344.	1.7	36

#	Article	IF	CITATIONS
73	Photoinduced anchoring and micropatterning of macroinitiators on polyurethane surfaces for graft polymerization of antifouling brush coatings. Journal of Materials Chemistry B, 2014, 2, 398-408.	2.9	31
74	A well-defined amphiphilic polymer co-network from precise control of the end-functional groups of linear RAFT polymers. RSC Advances, 2014, 4, 8144.	1.7	26
75	Functionalized Mesoporous Silica Nanoparticles with Mucoadhesive and Sustained Drug Release Properties for Potential Bladder Cancer Therapy. Langmuir, 2014, 30, 6151-6161.	1.6	101
76	Catecholamine-Induced Electroless Metallization of Silver on Silica@Polymer Hybrid Nanospheres and Their Catalytic Applications. Industrial & Engineering Chemistry Research, 2014, 53, 3116-3124.	1.8	24
77	Rhodamine derivative-modified filter papers for colorimetric and fluorescent detection of Hg2+ in aqueous media. Journal of Materials Chemistry A, 2013, 1, 2526.	5.2	54
78	A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Advances, 2013, 3, 25204.	1.7	30
79	CO ₂ -triggered fluorescence "turn-on―response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). Journal of Materials Chemistry A, 2013, 1, 1207-1212.	5.2	44
80	In Situ Synthesis and Nonvolatile Rewritableâ€Memory Effect of Polyanilineâ€Functionalized Graphene Oxide. Chemistry - A European Journal, 2013, 19, 6265-6273.	1.7	55
81	Cyclodextrin-functionalized graphene nanosheets, and their host-guest polymer nanohybrids. Polymer, 2013, 54, 2264-2271.	1.8	30
82	Reactive Graphene Oxide Nanosheets: A Versatile Platform for the Fabrication of Graphene Oxide–Biomolecule/Polymer Nanohybrids. Macromolecular Rapid Communications, 2013, 34, 234-238.	2.0	22
83	Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage. Applied Physics Letters, 2013, 103, .	1.5	31
84	Polymeric Nanoparticles with Encapsulated Superparamagnetic Iron Oxide and Conjugated Cisplatin for Potential Bladder Cancer Therapy. Biomacromolecules, 2012, 13, 2513-2520.	2.6	79
85	Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir, 2012, 28, 16408-16422.	1.6	139
86	Poly(dopamine acrylamide)-co-poly(propargyl acrylamide)-modified titanium surfaces for  click' functionalization. Polymer Chemistry, 2012, 3, 920.	1.9	54
87	Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli. Industrial & Engineering Chemistry Research, 2012, 51, 13164-13172.	1.8	33
88	Fluorescent nanoparticles from self-assembly of \hat{l}^2 -cyclodextrin-functionalized fluorene copolymers for organic molecule sensing and cell labeling. Polymer Chemistry, 2012, 3, 2444.	1.9	20
89	Push–Pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. Journal of Polymer Science Part A, 2012, 50, 378-387.	2.5	71
90	Water-soluble highly fluorescent poly[poly(ethylene glycol) methyl ether methacrylate] for cell labeling. Journal of Materials Chemistry, 2011, 21, 6502.	6.7	27

#	Article	IF	CITATION
91	Clickable poly(ester amine) dendrimer-grafted Fe3O4 nanoparticles prepared via successive Michael addition and alkyne–azide click chemistry. Polymer Chemistry, 2011, 2, 1312.	1.9	25
92	Hairy Hybrid Microrattles of Metal Nanocore with Functional Polymer Shell and Brushes. Macromolecules, 2011, 44, 2365-2370.	2.2	45
93	Synthesis and characterization of fluorescent perylene bisimide-containing glycopolymers for Escherichia coli conjugation and cell imaging. Polymer, 2011, 52, 5764-5771.	1.8	21
94	Growing poly(<i>N</i> â€vinylcarbazole) from the surface of graphene oxide via RAFT polymerization. Journal of Polymer Science Part A, 2011, 49, 2043-2050.	2.5	76
95	Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromolecular Rapid Communications, 2011, 32, 684-688.	2.0	135
96	Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer, 2011, 52, 2376-2383.	1.8	89
97	Sliding-Graft Interpenetrating Polymer Networks from Simultaneous "Click Chemistry―and Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 9761-9770.	2.2	52
98	Hairy Hollow Microspheres of Fluorescent Shell and Temperature-Responsive Brushes via Combined Distillation-Precipitation Polymerization and Thiolâ^'ene Click Chemistry. Macromolecules, 2010, 43, 5797-5803.	2.2	77
99	One-Pot Preparation of Ferrocene-Functionalized Polymer Brushes on Gold Substrates by Combined Surface-Initiated Atom Transfer Radical Polymerization and "Click Chemistry― Langmuir, 2010, 26, 15376-15382.	1.6	57
100	Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 2010, 43, 8336-8339.	2.2	719
101	Preparation and applications of functional nanofibers based on the combination of electrospinning, controlled radical polymerization and †Click Chemistry'. Nanoscale, 2010, 2, 1348.	2.8	22
102	Simultaneous "Click Chemistry―and Atom Transfer Radical Emulsion Polymerization and Prepared Well-Defined Cross-Linked Nanoparticles. Macromolecules, 2009, 42, 6385-6392.	2.2	48