J Michael Ruohoniemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3711168/publications.pdf

Version: 2024-02-01

190 papers 7,569 citations

50276 46 h-index 79 g-index

200 all docs

200 docs citations

200 times ranked 2614 citing authors

#	Article	IF	CITATIONS
1	A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surveys in Geophysics, 2007, 28, 33-109.	4.6	554
2	Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. Journal of Geophysical Research, 1998, 103, 20797-20811.	3.3	548
3	Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 1996, 101, 21743-21763.	3.3	326
4	Field line resonances associated with MHD waveguides in the magnetosphere. Geophysical Research Letters, 1992, 19, 441-444.	4.0	298
5	Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 2005, 110,	3.3	233
6	Global energy deposition during the January 1997 magnetic cloud event. Journal of Geophysical Research, 1998, 103, 11685-11694.	3.3	159
7	The response of high-latitude convection to a sudden southward IMF turning. Geophysical Research Letters, 1998, 25, 2913-2916.	4.0	139
8	HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector. Journal of Geophysical Research, 1991, 96, 15697-15710.	3.3	133
9	Drift motions of smallâ€scale irregularities in the highâ€latitude <i>F</i> region: An experimental comparison with plasma drift motions. Journal of Geophysical Research, 1987, 92, 4553-4564.	3.3	127
10	Quiet-time intensifications along the poleward auroral boundary near midnight. Journal of Geophysical Research, 1994, 99, 287.	3.3	124
11	Electrostatic potential patterns in the high-latitude ionosphere constrained by SuperDARN measurements. Journal of Geophysical Research, 2000, 105, 23005-23014.	3.3	120
12	Climatological patterns of highâ€katitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. Journal of Geophysical Research, 2010, 115,	3.3	118
13	Magnetometer and radar observations of magnetohydrodynamic cavity modes in the Earth's magnetosphere. Canadian Journal of Physics, 1991, 69, 929-937.	1.1	114
14	Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Progress in Earth and Planetary Science, 2019, 6, .	3.0	114
15	Testing the Hill model of transpolar potential with Super Dual Auroral Radar Network observations. Geophysical Research Letters, 2003, 30, 2-1-2-4.	4.0	112
16	Direct Observations of the Evolution of Polar Cap Ionization Patches. Science, 2013, 339, 1597-1600.	12.6	111
17	Maps of precipitation by source region, binned by IMF, with inertial convection streamlines. Journal of Geophysical Research, 2004, 109, .	3.3	97
18	Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 2013, 118, 1180-1189.	2.4	93

#	Article	IF	CITATIONS
19	Comparison of plasma flow velocities determined by the ionosonde Doppler drift technique, SuperDARN radars, and patch motion. Radio Science, 1995, 30, 1537-1549.	1.6	87
20	Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions. Journal of Geophysical Research, 2002, 107, SMP 5-1.	3.3	80
21	Goose Bay radar observations of Earthâ€reflected, atmospheric gravity waves in the highâ€latitude ionosphere. Journal of Geophysical Research, 1990, 95, 7693-7709.	3.3	77
22	Mapping highâ€latitude plasma convection with coherent HF radars. Journal of Geophysical Research, 1989, 94, 13463-13477.	3.3	75
23	Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 2012, 117, .	3.3	75
24	Simultaneous HFâ€radar and DMSP observations of the cusp. Geophysical Research Letters, 1990, 17, 1869-1872.	4.0	74
25	On the generation/decay of the stormâ€enhanced density plumes: Role of the convection flow and fieldâ€aligned ion flow. Journal of Geophysical Research: Space Physics, 2014, 119, 8543-8559.	2.4	74
26	Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth, Planets and Space, 2017, 69, .	2.5	74
27	First observations of the temporal/spatial variation of the sub-auroral polarization stream from the SuperDARN Wallops HF radar. Geophysical Research Letters, 2006, 33, .	4.0	70
28	Dayâ€night coupling by a localized flow channel visualized by polar cap patch propagation. Geophysical Research Letters, 2014, 41, 3701-3709.	4.0	65
29	On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. Journal of Geophysical Research, 2009, 114, .	3.3	64
30	Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. Journal of Geophysical Research, 2006, 111, .	3.3	62
31	Possible connection of polar cap flows to pre- and post-substorm onset PBIs and streamers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
32	Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions. Journal of Geophysical Research: Space Physics, 2015, 120, 4519-4530.	2.4	61
33	Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 2014, 119, 142-150.	2.4	58
34	Rates of scattering occurrence in routine HF radar observations during solar cycle maximum. Radio Science, 1997, 32, 1051-1070.	1.6	56
35	Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	55
36	OVATION: Oval variation, assessment, tracking, intensity, and online nowcasting. Annales Geophysicae, 2002, 20, 1039-1047.	1.6	54

#	Article	IF	Citations
37	EMIC waves observed at geosynchronous orbit during solar minimum: Statistics and excitation. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	54
38	Multiâ€instrument observations of SED during 24â€"25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 2013, 118, 7798-7809.	2.4	53
39	Temporal and spatial dynamics of the regions 1 and 2 Birkeland currents during substorms. Journal of Geophysical Research: Space Physics, 2013, 118, 3007-3016.	2.4	52
40	Auroral poleward boundary intensifications and tail bursty flows: A manifestation of a large-scale ULF oscillation?. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	51
41	Largeâ€scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations. Journal of Geophysical Research, 2012, 117, .	3.3	51
42	The role of the ionosphere in aurora and space weather. Reviews of Geophysics, 2001, 39, 137-149.	23.0	50
43	Sources and characteristics of mediumâ€scale traveling ionospheric disturbances observed by highâ€frequency radars in the North American sector. Journal of Geophysical Research: Space Physics, 2016, 121, 3722-3739.	2.4	50
44	lonospheric response to the interplanetary magnetic field southward turning: Fast onset and slow reconfiguration. Journal of Geophysical Research, 2002, 107, SIA 2-1-SIA 2-9.	3.3	49
45	GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 10,448.	2.4	49
46	Polar Anglo-American Conjugate Experiment. Eos, 1989, 70, 785.	0.1	47
47	Highâ€frequency radar observations of atmospheric gravity waves in the highâ€latitude ionosphere. Geophysical Research Letters, 1989, 16, 875-878.	4.0	44
48	Climatology of mediumâ€scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. Journal of Geophysical Research: Space Physics, 2014, 119, 7679-7697.	2.4	44
49	Statistical characterization of the largeâ€scale structure of the subauroral polarization stream. Journal of Geophysical Research: Space Physics, 2017, 122, 6035-6048.	2.4	42
50	Global ULF disturbances during a stormtime substorm on 25 September 1998. Journal of Geophysical Research, 2002, 107, SMP 40-1-SMP 40-11.	3.3	41
51	Observations of dayside convection reduction leading to substorm onset. Journal of Geophysical Research, 2003, 108, .	3.3	41
52	Dayside reconnection enhancement resulting from a solar wind dynamic pressure increase. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	41
53	The geomagnetic storm time response of GPS total electron content in the North American sector. Journal of Geophysical Research: Space Physics, 2016, 121, 1744-1759.	2.4	41
54	Evolution of ionospheric multicell convection during northward interplanetary magnetic field with $ Bz/By > 1$. Journal of Geophysical Research, 2000, 105, 27095-27107.	3.3	40

#	Article	IF	CITATIONS
55	Observations of IMF and seasonal effects in high-latitude convection. Geophysical Research Letters, 1995, 22, 1121-1124.	4.0	39
56	A possible explanation for rapid, large-scale ionospheric responses to southward turnings of the IMF. Geophysical Research Letters, 1999, 26, 3197-3200.	4.0	38
57	Storm-time penetration electric fields and their effects. Eos, 2006, 87, 131.	0.1	38
58	lonospheric refraction effects in slant range profiles of auroral HF coherent echoes. Radio Science, 1994, 29, 503-517.	1.6	36
59	Statistical relationships between enhanced polar cap flows and PBIs. Journal of Geophysical Research: Space Physics, 2014, 119, 151-162.	2.4	36
60	Long‣asting Poloidal ULF Waves Observed by Multiple Satellites and High‣atitude SuperDARN Radars. Journal of Geophysical Research: Space Physics, 2018, 123, 8422-8438.	2.4	36
61	A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations. Radio Science, 2011, 46, .	1.6	35
62	On the influence of open magnetic flux on substorm intensity: Ground―and spaceâ€based observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2958-2969.	2.4	35
63	Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 2370-2378.	2.4	35
64	High-latitude poynting flux from combined Iridium and SuperDARN data. Annales Geophysicae, 2004, 22, 2861-2875.	1.6	34
65	Identification of the temperature gradient instability as the source of decameter-scale ionospheric irregularities on plasmapause field lines. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	34
66	Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts. Journal of Geophysical Research: Space Physics, 2015, 120, 5009-5021.	2.4	34
67	Earth's ion upflow associated with polar cap patches: Global and in situ observations. Geophysical Research Letters, 2016, 43, 1845-1853.	4.0	34
68	Characterization of Shortâ€Wave Fadeout Seen in Daytime SuperDARN Ground Scatter Observations. Radio Science, 2018, 53, 472-484.	1.6	34
69	Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 2015, 120, 4064-4078.	2.4	33
70	A comparison of SuperDARN ACF fitting methods. Radio Science, 2013, 48, 274-282.	1.6	31
71	An examination of interâ€hemispheric conjugacy in a subauroral polarization stream. Journal of Geophysical Research, 2012, 117, .	3.3	29
72	lon gyroâ€harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyroâ€harmonic heating. Journal of Geophysical Research: Space Physics, 2013, 118, 1270-1287.	2.4	29

#	Article	IF	CITATIONS
73	Comparison of SuperDARN radar boundaries with DMSP particle precipitation boundaries. Journal of Geophysical Research, 2005, 110 , .	3.3	28
74	The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects. Journal of Geophysical Research: Space Physics, 2016, 121, 10,880.	2.4	27
75	Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows. Journal of Geophysical Research: Space Physics, 2017, 122, 12,406.	2.4	27
76	Satelliteâ€beacon Ionosphericâ€scintillation Global Model of the upper Atmosphere (SIGMA) II: Inverse modeling with highâ€latitude observations to deduce irregularity physics. Journal of Geophysical Research: Space Physics, 2016, 121, 9188-9203.	2.4	26
77	Direct measurements of the ionospheric convection variability near the cusp/throat. Geophysical Research Letters, 2003, 30, .	4.0	25
78	A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar. Journal of Geophysical Research, $2012,117,$	3.3	25
79	Spatial distribution of average vorticity in the highâ€latitude ionosphere and its variation with interplanetary magnetic field direction and season. Journal of Geophysical Research, 2009, 114, .	3.3	24
80	Twoâ€dimensional ionospheric flow pattern associated with auroral streamers. Journal of Geophysical Research, 2012, 117, .	3.3	24
81	Dense plasma and Kelvinâ€Helmholtz waves at Earth's dayside magnetopause. Journal of Geophysical Research: Space Physics, 2015, 120, 5560-5573.	2.4	24
82	Polar cap patch transportation beyond the classic scenario. Journal of Geophysical Research: Space Physics, 2016, 121, 9063-9074.	2.4	24
83	Observations of plasma density structures in association with the passage of traveling convection vortices and the occurrence of large plasma jets. Annales Geophysicae, 1999, 17, 1020-1039.	1.6	23
84	Using patchy pulsating aurora to remote sense magnetospheric convection. Geophysical Research Letters, 2015, 42, 5083-5089.	4.0	23
85	Examining the Potential of the Super Dual Auroral Radar Network for Monitoring the Space Weather Impact of Solar Xâ€Ray Flares. Space Weather, 2018, 16, 1348-1362.	3.7	23
86	The quasi-two-day wave studied using the Northern Hemisphere SuperDARN HF radars. Annales Geophysicae, 2007, 25, 1767-1778.	1.6	22
87	On the spatial distribution of decameterâ€'scale subauroral ionospheric irregularities observed by SuperDARN radars. Journal of Geophysical Research: Space Physics, 2013, 118, 5244-5254.	2.4	22
88	Radar auroral echo heights as seen by a 398â€MHz phased array radar operated at Homer, Alaska. Radio Science, 1985, 20, 719-734.	1.6	21
89	GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – Part 1: The North American sector. Annales Geophysicae, 2015, 33, 637-656.	1.6	21
90	Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT. Annales Geophysicae, 2015, 33, 983-990.	1.6	20

#	Article	IF	Citations
91	Survey of Ionospheric Pc3â€5 ULF Wave Signatures in SuperDARN High Time Resolution Data. Journal of Geophysical Research: Space Physics, 2018, 123, 4215-4231.	2.4	20
92	First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
93	Near Earth Plasma Sheet Penetration and Geomagnetic Disturbances. Geophysical Monograph Series, 0, , 241-257.	0.1	19
94	Investigation of the temperature gradient instability as the source of midlatitude quiet time decameterâ€scale ionospheric irregularities: 2. Linear analysis. Journal of Geophysical Research: Space Physics, 2014, 119, 4882-4893.	2.4	19
95	PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2017, 122, 2589-2604.	2.4	19
96	A Study of SuperDARN Response to Coâ€occurring Space Weather Phenomena. Space Weather, 2019, 17, 1351-1363.	3.7	19
97	Evolution of Midâ€latitude Density Irregularities and Scintillation in North America During the 7–8 September 2017 Storm. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029192.	2.4	19
98	Solar wind Alfv \tilde{A} @n waves: a source of pulsed ionospheric convection and atmospheric gravity waves. Annales Geophysicae, 2005, 23, 401-417.	1.6	19
99	Winds and tides in the mid-latitude Southern Hemisphere upper mesosphere recorded with the Falkland Islands SuperDARN radar. Annales Geophysicae, 2011, 29, 1985-1996.	1.6	18
100	Ionospheric flow structures associated with auroral beading at substorm auroral onset. Journal of Geophysical Research: Space Physics, 2014, 119, 9150-9159.	2.4	18
101	Spreading Speed of Magnetopause Reconnection Xâ€Lines Using Groundâ€Satellite Coordination. Geophysical Research Letters, 2018, 45, 80-89.	4.0	18
102	Ionospheric signatures of internal reconnection for northward interplanetary magnetic field: Observation of $\hat{a} \in \mathbb{C}$ we calls $\hat{a} \in \mathbb{C}$ and magnetosheath ion precipitation. Journal of Geophysical Research, 2006, 111, .	3.3	17
103	Westward traveling surges: Sliding along boundary arcs and distinction from onset arc brightening. Journal of Geophysical Research: Space Physics, 2013, 118, 7643-7653.	2.4	17
104	Role of IMF <i>B</i> _{<i>y</i>} in the prompt electric field disturbances over equatorial ionosphere during a space weather event. Journal of Geophysical Research: Space Physics, 2017, 122, 2574-2588.	2.4	17
105	Temporal and Spatial Variations of Storm Time Midlatitude Ionospheric Trough Based on Global GNSSâ€₹EC and Arase Satellite Observations. Geophysical Research Letters, 2018, 45, 7362-7370.	4.0	17
106	Substorm associated changes in the highâ€latitude ionospheric convection. Geophysical Research Letters, 2003, 30, .	4.0	16
107	Observations of ionospheric plasma flows within theta auroras. Journal of Geophysical Research, 2005, 110 , .	3.3	16
108	Spherical cap harmonic analysis of Super Dual Auroral Radar Network (SuperDARN) observations for generating maps of ionospheric convection. Journal of Geophysical Research, 2010, 115, .	3.3	16

#	Article	IF	CITATIONS
109	Highâ€latitude thermospheric wind observations and simulations with SuperDARN data driven NCAR TIEGCM during the December 2006 magnetic storm. Journal of Geophysical Research: Space Physics, 2015, 120, 6021-6028.	2.4	16
110	GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – Part 2: Interhemispheric comparison. Annales Geophysicae, 2015, 33, 657-670.	1.6	16
111	A New Empirical Model of the Subauroral Polarization Stream. Journal of Geophysical Research: Space Physics, 2018, 123, 7342-7357.	2.4	16
112	Observations of Pi2 pulsations by the Wallops HF radar in association with substorm expansion. Geophysical Research Letters, 2007, 34, .	4.0	15
113	Investigation of the role of plasma wave cascading processes in the formation of midlatitude irregularities utilizing GPS and radar observations. Radio Science, 2016, 51, 836-851.	1.6	15
114	A Deep Learningâ€Based Approach to Forecast the Onset of Magnetic Substorms. Space Weather, 2019, 17, 1534-1552.	3.7	15
115	Observations of storm time midlatitude ionâ€neutral coupling using SuperDARN radars and NATION Fabryâ€Perot interferometers. Journal of Geophysical Research: Space Physics, 2015, 120, 8989-9003.	2.4	14
116	Polar cap precursor of nightside auroral oval intensifications using polar cap arcs. Journal of Geophysical Research: Space Physics, 2015, 120, 10,698-10,711.	2.4	14
117	Localized field-aligned currents in the polar cap associated with airglow patches. Journal of Geophysical Research: Space Physics, 2016, 121, 10,172-10,189.	2.4	14
118	Investigating Upper Atmospheric Joule Heating Using Crossâ€Combination of Data for Two Moderate Substorm Cases. Space Weather, 2018, 16, 987-1012.	3.7	14
119	First Observation of Ionospheric Convection From the Jiamusi HF Radar During a Strong Geomagnetic Storm. Earth and Space Science, 2020, 7, e2019EA000911.	2.6	14
120	First radar measurements of ionospheric electric fields at subâ€second temporal resolution. Geophysical Research Letters, 2008, 35, .	4.0	13
121	Multipoint Conjugate Observations of Dayside ULF Waves During an Extended Period of Radial IMF. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028364.	2.4	13
122	First Observations of Large Scale Traveling Ionospheric Disturbances Using Automated Amateur Radio Receiving Networks. Geophysical Research Letters, 2022, 49, .	4.0	13
123	Polar rain gradients and fieldâ€aligned polar cap potentials. Journal of Geophysical Research, 2008, 113, .	3.3	12
124	First radar observations in the vicinity of the plasmapause of pulsed ionospheric flows generated by bursty bulk flows. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	12
125	Multiâ€instrument, highâ€resolution imaging of polar cap patch transportation. Radio Science, 2015, 50, 904-915.	1.6	12
126	Association Between EMIC Wave Occurrence and Enhanced Convection Periods During Ion Injections. Geophysical Research Letters, 2020, 47, e2019GL085676.	4.0	12

#	Article	IF	Citations
127	Nightside flow enhancement associated with solar wind dynamic pressure driven reconnection. Journal of Geophysical Research, 2008, 113 , .	3.3	11
128	Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field. Annales Geophysicae, 2008, 26, 1415-1430.	1.6	11
129	Modeling of a twin terminated folded dipole antenna for the Super Dual Auroral Radar Network (SuperDARN)., 2011,,.		11
130	Local time extent of magnetopause reconnection using space–ground coordination. Annales Geophysicae, 2019, 37, 215-234.	1.6	11
131	Multiâ€instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection. Journal of Geophysical Research: Space Physics, 2019, 124, 1770-1784.	2.4	11
132	Coordinated convection measurements in the vicinity of auroral cavities. Radio Science, 1994, 29, 293-309.	1.6	10
133	Hemispheric asymmetries in ionospheric electrodynamics during the solar wind void of 11 May 1999. Geophysical Research Letters, 2000, 27, 4013-4016.	4.0	10
134	Dawn and dusk sector comparisons of small-scale irregularities, convection, and particle precipitation in the high-latitude ionosphere. Journal of Geophysical Research, 2002, 107, SIA 1-1.	3.3	10
135	Ring current intensification and convection-driven negative bays: Multisatellite studies. Journal of Geophysical Research, 2003, 108, .	3.3	10
136	Global Diagnostics of Ionospheric Absorption During Xâ€Ray Solar Flares Based on 8―to 20â€MHz Noise Measured by Overâ€theâ€Horizon Radars. Space Weather, 2019, 17, 907-924.	3.7	10
137	An assessment of the "map-potential" and "beam-swinging" techniques for measuring the ionospheric convection pattern using data from the SuperDARN radars. Annales Geophysicae, 2002, 20, 191-202.	1.6	9
138	The magnetic storms of 3–4 August 2010 and 5–6 August 2011: 1. Ground―and spaceâ€based observation Journal of Geophysical Research: Space Physics, 2017, 122, 3487-3499.	าร 2.4	9
139	Statistical Study of Nightside Quiet Time Midlatitude Ionospheric Convection. Journal of Geophysical Research: Space Physics, 2018, 123, 2228-2240.	2.4	9
140	Substormâ€Associated Ionospheric Flow Fluctuations During the 27 March 2017 Magnetic Storm: SuperDARNâ€Arase Conjunction. Geophysical Research Letters, 2018, 45, 9441-9449.	4.0	9
141	lonospheric convection during the magnetic storm of 20-21 March 1990. Annales Geophysicae, 1994, 12, 1174-1191.	1.6	8
142	A case study of relationship between substorm expansion and global plasma convection. Geophysical Research Letters, 2006, 33, .	4.0	8
143	Investigation of the temperature gradient instability as the source of midlatitude quiet time decameterâ€scale ionospheric irregularities: 1. Observations. Journal of Geophysical Research: Space Physics, 2014, 119, 4872-4881.	2.4	8
144	An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF <i>B_z</i> condition. Journal of Geophysical Research: Space Physics, 2016, 121, 4800-4810.	2.4	8

#	Article	IF	CITATIONS
145	Simultaneous space and groundâ€based observations of a plasmaspheric virtual resonance. Journal of Geophysical Research: Space Physics, 2017, 122, 4190-4209.	2.4	8
146	Conjugate comparison of Super Dual Auroral Radar Network and Cluster electron drift instrument measurements of E×Bplasma drift. Journal of Geophysical Research, 2004, 109, .	3.3	7
147	Investigation of sudden electron density depletions observed in the dusk sector by the Poker Flat, Alaska incoherent scatter radar in summer. Journal of Geophysical Research: Space Physics, 2014, 119, 10,608.	2.4	7
148	A Deep Learningâ€Based Approach for Modeling the Dynamics of AMPERE Birkeland Currents. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027908.	2.4	7
149	Ionospheric Sluggishness: A Characteristic Timeâ€Lag of the Ionospheric Response to Solar Flares. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028813.	2.4	7
150	Geospace Plume and Its Impact on Dayside Magnetopause Reconnection Rate. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029117.	2.4	7
151	Unsteady Magnetopause Reconnection Under Quasiâ€Steady Solar Wind Driving. Geophysical Research Letters, 2022, 49, .	4.0	7
152	Periodic longitudinal structure of field-aligned currents in the dawn sector: Large-scale meandering of an auroral electrojet. Geophysical Research Letters, 1994, 21, 1879-1882.	4.0	6
153	ULF wave characteristics at geosynchronous orbit during the recovery phase of geomagnetic storms associated with strong electron acceleration. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	6
154	A realistic radar data simulator for the Super Dual Auroral Radar Network. Radio Science, 2013, 48, 283-288.	1.6	6
155	HF radar observations of a quasiâ€biennial oscillation in midlatitude mesospheric winds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,677.	3.3	6
156	Characterization of Highâ€m ULF Wave Signatures in GPS TEC Data. Geophysical Research Letters, 2021, 48, e2021GL094282.	4.0	6
157	A Modeling Framework for Estimating Ionospheric HF Absorption Produced by Solar Flares. Radio Science, 2021, 56, e2021RS007285.	1.6	6
158	Multiâ€Scale Density Structures in the Plasmaspheric Plume During a Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
159	Interhemispheric observations of nightside ionospheric electric fields in response to IMF <i>B_z</i> and <i>B_y</i> changes and substorm pseudobreakup. Annales Geophysicae, 2000, 18, 897-907.	1.6	5
160	Inverse energy dispersion of energetic ions observed in the magnetosheath. Geophysical Research Letters, 2016, 43, 7338-7347.	4.0	5
161	Longitudinal Development of Poleward Boundary Intensifications (PBIs) of Auroral Emission. Journal of Geophysical Research: Space Physics, 2018, 123, 9005-9021.	2.4	5
162	Response of Thermospheric Nightglow Emissions Over the Magnetic Equator to Prompt Penetration Electric Field Events. Journal of Geophysical Research: Space Physics, 2019, 124, 5918-5935.	2.4	5

#	Article	IF	Citations
163	Bistatic Observations With SuperDARN HF Radars: First Results. Radio Science, 2020, 55, e2020RS007121.	1.6	5
164	Direct Observations of a Polar Cap Patch Formation Associated With Dayside Reconnection Driven Fast Flow. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027745.	2.4	5
165	IMF effect on sporadic-E layers at two northern polar cap sites: Part II – Electric field. Annales Geophysicae, 2006, 24, 901-913.	1.6	4
166	RISRâ€N observations of the IMF B y influence on reverse convection during extreme northward IMF. Journal of Geophysical Research: Space Physics, 2017, 122, 3707-3720.	2.4	4
167	Recent Developments in Our Knowledge of Inner Magnetosphereâ€lonosphere Convection. Journal of Geophysical Research: Space Physics, 2018, 123, 7276-7282.	2.4	4
168	Purple Auroral Rays and Global Pc1 Pulsations Observed at the CIRâ€Associated Solar Wind Density Enhancement on 21 March 2017. Geophysical Research Letters, 2018, 45, 10,819.	4.0	4
169	The Role of Flareâ€Driven Ionospheric Electron Density Changes on the Doppler Flash Observed by SuperDARN HF Radars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029300.	2.4	4
170	An Examination of Magnetosphereâ€lonosphere Influences During a SAPS Event. Geophysical Research Letters, 2021, 48, e2021GL095751.	4.0	4
171	Multiresolution Modeling of Highâ€Latitude Ionospheric Electric Field Variability and Impact on Joule Heating Using SuperDARN Data. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029196.	2.4	4
172	IMF effect on sporadic-E layers at two northern polar cap sites: Part I $\hat{a} \in$ Statistical study. Annales Geophysicae, 2006, 24, 887-900.	1.6	4
173	Driving Influences of the Doppler Flash Observed by SuperDARN HF Radars in Response to Solar Flares. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
174	Interaction Between Proton Aurora and Stable Auroral Red Arcs Unveiled by Citizen Scientist Photographs. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
175	Dayside Cusp Aurorae and Ionospheric Convection Under Radial Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2021, 126, e2019JA027664.	2.4	3
176	Measurements show the need for a rapid response to space weather disturbances. Eos, 1999, 80, 165.	0.1	2
177	Monitoring ionospheric space weather with the Super Dual Auroral Radar Network (SuperDARN). , 2010, , .		2
178	Morphology of Nightside Subauroral Ionospheric Convection: Monthly, Seasonal, Kp, and IMF Dependencies. Journal of Geophysical Research: Space Physics, 2019, 124, 4608-4626.	2.4	2
179	Dayside Polar Cap Density Enhancements Formed During Substorms. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028101.	2.4	2
180	Investigation of the generation source of decameter-scale sub-auroral ionospheric irregularities during geomagnetically quiet periods. , 2014, , .		1

#	Article	lF	CITATIONS
181	An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere. , 2014, , .		1
182	Investigation of temperature gradient instability as the source of mid-latitude decameter-scale quiet-time ionospheric irregularities. , $2014, \dots$		1
183	Observations and Modeling Studies of Solar Eclipse Effects on Oblique High Frequency Radio Propagation. Space Weather, 2021, 19, e2020SW002560.	3.7	1
184	Simultaneous Development of Multiple Auroral Substorms: Double Auroral Bulge Formation. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028883.	2.4	1
185	Probabilistic Short-wave Fadeout Detection in SuperDARN Time Series Observations. , 2021, , .		1
186	Remote sensing of sea ice cover using SuperDARN HF radars. , 2014, , .		0
187	Multi-instrument observations of storm-enhanced density during geomagnetic storms. , 2014, , .		0
188	Identification of the plasma instabilities responsible for mid-latitude decameter-scale ionospheric irregularities. , $2015, , .$		0
189	Storm-time convection dynamics viewed from optical auroras. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193, 105088.	1.6	0
190	Sluggishness of the Ionosphere: Characteristic time-lag in Response to Solar Flares. , 2020, , .		0