
Ninan Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	InÂvivo availability of the cytokine IL-7 constrains the survival and homeostasis of peripheral iNKT cells. Cell Reports, 2022, 38, 110219.	6.4	12
2	Selective dependence on IL-7 for antigen-specific CD8 T cell responses during airway influenza infection. Scientific Reports, 2022, 12, 135.	3.3	4
3	CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncolmmunology, 2022, 11, 2010905.	4.6	12
4	IL-7 induces type 2 cytokine response in lung ILC2s and regulates GATA3 and CD25 expression. Journal of Leukocyte Biology, 2022, 112, 1105-1113.	3.3	4
5	Hyper–Sensitive? Targeted Therapy With a Primed Immune System. Journal of Thoracic Oncology, 2022, 17, 734-736.	1.1	0
6	Assessment of long non-coding RNA expression reveals novel mediators of the lung tumour immune response. Scientific Reports, 2020, 10, 16945.	3.3	16
7	Interleukin-7 Receptor Alpha in Innate Lymphoid Cells: More Than a Marker. Frontiers in Immunology, 2019, 10, 2897.	4.8	29
8	MA24.06 Long Non-Coding Rna Expression Patterns Delineate Infiltrating Immune Cells in the Lung Tumour Microenvironment. Journal of Thoracic Oncology, 2018, 13, S443-S444.	1.1	4
9	Somatic mutation-associated T follicular helper cell elevation in lung adenocarcinoma. Oncolmmunology, 2018, 7, e1504728.	4.6	14
10	Interleukinâ€7 in the transition of bone marrow progenitors to the thymus. Immunology and Cell Biology, 2017, 95, 916-924.	2.3	13
11	MA 05.12 Oncogenic Drivers Induce Production of CCL5 to Recruit Regulatory T-Cells Early in Lung Cancer Progression. Journal of Thoracic Oncology, 2017, 12, S1818-S1819.	1.1	0
12	Topical CpG Oligodeoxynucleotide Adjuvant Enhances the Adaptive Immune Response against Influenza A Infections. Frontiers in Immunology, 2016, 7, 284.	4.8	7
13	Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Molecular Cancer, 2016, 15, 67.	19.2	141
14	Common-Lymphoid-Progenitor-Independent Pathways of Innate and T Lymphocyte Development. Cell Reports, 2016, 15, 471-480.	6.4	53
15	Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors. Brain, Behavior, and Immunity, 2016, 57, 271-281.	4.1	24
16	Survival of Effector CD8+ T Cells during Influenza Infection Is Dependent on Autophagy. Journal of Immunology, 2015, 194, 4277-4286.	0.8	59
17	Steroid Profiling Reveals Widespread Local Regulation of Glucocorticoid Levels During Mouse Development. Endocrinology, 2015, 156, 511-522.	2.8	53
18	The Development and Survival but Not Function of Follicular B Cells Is Dependent on IL-7Rα Tyr449 Signaling. PLoS ONE, 2014, 9, e88771.	2.5	10

Ninan Abraham

#	Article	IF	CITATIONS
19	The Survival and Differentiation of Pro-B and Pre-B Cells in the Bone Marrow Is Dependent on IL-7Rα Tyr449. Journal of Immunology, 2014, 193, 3446-3455.	0.8	18
20	Unusual timing of CD127 expression by mouse uterine natural killer cells. Journal of Leukocyte Biology, 2012, 91, 417-426.	3.3	22
21	Interleukin-7, but Not Thymic Stromal Lymphopoietin, Plays a Key Role in the T Cell Response to Influenza A Virus. PLoS ONE, 2012, 7, e50199.	2.5	24
22	Elevated IL-7 Availability Does Not Account for T Cell Proliferation in Moderate Lymphopenia. Journal of Immunology, 2011, 186, 1981-1988.	0.8	8
23	Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nature Immunology, 2011, 12, 1086-1095.	14.5	63
24	Selective ablation of the YxxM motif of IL-7Rα suppresses lymphomagenesis but maintains lymphocyte development. Oncogene, 2010, 29, 3854-3864.	5.9	15
25	CD45 Regulates Migration, Proliferation, and Progression of Double Negative 1 Thymocytes. Journal of Immunology, 2010, 185, 2059-2070.	0.8	20
26	Regulation of memory T cells by \hat{I}^3 c cytokines. Cytokine, 2010, 50, 105-113.	3.2	44
27	Proteomics Analysis of Interleukin (IL)-7-induced Signaling Effectors Shows Selective Changes in IL-7Rα449F Knock-in T Cell Progenitors. Molecular and Cellular Proteomics, 2007, 6, 1700-1710.	3.8	17
28	Impaired CD8 T cell memory and CD4 T cell primary responses in IL-7Rα mutant mice. Journal of Experimental Medicine, 2007, 204, 619-631.	8.5	85
29	RasGRP1 Transmits Prodifferentiation TCR Signaling That Is Crucial for CD4 T Cell Development. Journal of Immunology, 2006, 177, 1470-1480.	0.8	21
30	Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene, 2005, 24, 5252-5257.	5.9	41
31	Bone marrow transplant completely rescues hematolymphoid defects in STAT5A/5B-deficient mice. Experimental Hematology, 2003, 31, 1247-1252.	0.4	12
32	Transgenic bcl-2 is not sufficient to rescue all hematolymphoid defects in STAT5A/5B-deficient mice. Experimental Hematology, 2003, 31, 1253-1258.	0.4	13
33	Loss of Tolerance and Autoimmunity Affecting Multiple Organs in <i>STAT5A/5B</i> -Deficient Mice. Journal of Immunology, 2003, 171, 5042-5050.	0.8	122
34	STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood, 2002, 99, 95-101.	1.4	112
35	The Murine Double-Stranded RNA-Dependent Protein Kinase PKR Is Required for Resistance to Vesicular Stomatitis Virus. Journal of Virology, 2000, 74, 9580-9585.	3.4	190
36	Characterization of Transgenic Mice with Targeted Disruption of the Catalytic Domain of the Double-stranded RNA-dependent Protein Kinase, PKR. Journal of Biological Chemistry, 1999, 274, 5953-5962.	3.4	211

NINAN ABRAHAM

#	Article	IF	CITATIONS
37	Double-Stranded-RNA-Activated Protein Kinase PKR Enhances Transcriptional Activation by Tumor Suppressor p53. Molecular and Cellular Biology, 1999, 19, 2475-2484.	2.3	134
38	The Murine PKR Tumor Suppressor Gene Is Rearranged in a Lymphocytic Leukemia. Experimental Cell Research, 1998, 244, 394-404.	2.6	31
39	Molecular Biology: The Interferon System: A Review with Emphasis on the Role of PKR in Growth Control. Cancer Investigation, 1995, 13, 327-338.	1.3	43
40	Dual specificity kinases ? a new family of signal transducers. Cancer and Metastasis Reviews, 1994, 13, 1-7.	5.9	23
41	Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature, 1991, 350, 62-66.	27.8	294
42	The Lymphocyte-Specific Tyrosine Protein Kinase p56lck. Cancer Investigation, 1991, 9, 455-463.	1.3	8