Michael Adam Lones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710362/publications.pdf

Version: 2024-02-01

59 papers 820 citations

15 h-index 610883 24 g-index

66 all docs 66 docs citations

66 times ranked 776 citing authors

#	Article	IF	CITATIONS
1	Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample. Head & Neck Oncology, 2009, 1, 34.	2.3	59
2	Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms. SN Computer Science, 2020, $1,1.$	3.6	54
3	Regulatory Motif Discovery Using a Population Clustering Evolutionary Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 403-414.	3.0	46
4	Evolving Classifiers to Recognize the Movement Characteristics of Parkinson's Disease Patients. IEEE Transactions on Evolutionary Computation, 2014, 18, 559-576.	10.0	45
5	Using echo state networks for classification: A case study in Parkinson's disease diagnosis. Artificial Intelligence in Medicine, 2018, 86, 53-59.	6.5	40
6	Metaheuristics in nature-inspired algorithms., 2014,,.		39
7	Objective assessment of bradykinesia in Parkinson's disease using evolutionary algorithms: clinical validation. Translational Neurodegeneration, 2018, 7, 18.	8.0	39
8	Biochemical fingerprint of colorectal cancer cell lines using labelâ€free live singleâ€cell Raman spectroscopy, 2018, 49, 1323-1332.	2.5	32
9	Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming. BioSystems, 2004, 76, 229-238.	2.0	26
10	The evolutionary computation approach to motif discovery in biological sequences. , 2005, , .		25
11	Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	25
12	An in-depth review of machine learning based Android malware detection. Computers and Security, 2022, 121, 102833.	6.0	25
13	Biomimetic Representation with Genetic Programming Enzyme. Genetic Programming and Evolvable Machines, 2002, 3, 193-217.	2.2	23
14	The incorporation of epigenetics in artificial gene regulatory networks. BioSystems, 2013, 112, 56-62.	2.0	19
15	A New Evolutionary Algorithm-Based Home Monitoring Device for Parkinson's Dyskinesia. Journal of Medical Systems, 2017, 41, 176.	3.6	19
16	Parkinson's disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Computing and Applications, 2022, 34, 1433-1453.	5.6	19
17	Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary Computation, 2014, 18, 145-166.	10.0	15
18	Computational approaches for understanding the diagnosis and treatment of Parkinson's disease. IET Systems Biology, 2015, 9, 226-233.	1.5	15

#	Article	IF	Citations
19	Controlling Complex Dynamics with Artificial Biochemical Networks. Lecture Notes in Computer Science, 2010, , 159-170.	1.3	15
20	Characterising neurological time series data using biologically motivated networks of coupled discrete maps. BioSystems, 2013, 112, 94-101.	2.0	14
21	Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 218-230.	11.3	12
22	Investigating the use of Boolean networks for the control of gene regulatory networks. Journal of Computational Science, 2018, 26, 147-156.	2.9	12
23	Enzyme Genetic Programming. , 2004, , .		11
24	A co-evolutionary framework for regulatory motif discovery. , 2007, , .		10
25	Biochemical connectionism. Natural Computing, 2013, 12, 453-472.	3.0	10
26	The artificial epigenetic network., 2013,,.		9
27	Adaptive robotic gait control using coupled artificial signalling networks, hopf oscillators and inverse kinematics. , 2013, , .		8
28	Evolving classifiers to inform clinical assessment of Parkinson's disease. , 2013, , .		8
29	Relative Robustness of Quantized Neural Networks Against Adversarial Attacks. , 2020, , .		8
30	A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys. IEEE Access, 2021, 9, 122548-122567.	4.2	8
31	Implicit Context Representation Cartesian Genetic Programming for the assessment of visuo-spatial ability., 2009,,.		7
32	Discriminating normal and cancerous thyroid cell lines using implicit context representation Cartesian genetic programming. , 2010, , .		7
33	Computational models of signalling networks for non-linear control. BioSystems, 2013, 112, 122-130.	2.0	7
34	Classification and characterisation of movement patterns during levodopa therapy for parkinson's disease. , 2014, , .		7
35	Using Artificial Epigenetic Regulatory Networks to Control Complex Tasks within Chaotic Systems. Lecture Notes in Computer Science, 2012, , 1-11.	1.3	7
36	A comparison of evolved linear and non-linear ensemble vote aggregators. , 2015, , .		6

#	Article	IF	Citations
37	Forming classifier ensembles with multimodal evolutionary algorithms. , 2015, , .		6
38	Evolutionary Algorithms. , 2018, , 409-430.		6
39	Using epigenetic networks for the analysis of movement associated with levodopa therapy for Parkinson's disease. BioSystems, 2016, 146, 35-42.	2.0	5
40	Optimising Optimisers with Push GP. Lecture Notes in Computer Science, 2020, , 101-117.	1.3	5
41	Towards Intelligent Biological Control: Controlling Boolean Networks with Boolean Networks. Lecture Notes in Computer Science, 2016, , 351-362.	1. 3	4
42	Instruction-level design of local optimisers using push GP., 2019,,.		4
43	Evolutionary Algorithms. , 2018, , 1-22.		4
44	Evolving continuous optimisers from scratch. Genetic Programming and Evolvable Machines, 2021, 22, 395-428.	2.2	4
45	Characterisation of movement disorder in parkinson's disease using evolutionary algorithms., 2013,,.		3
46	Medical Applications of Cartesian Genetic Programming. Emergence, Complexity and Computation, 2018, , 247-266.	0.3	3
47	Evolved Artificial Signalling Networks for the Control of a Conservative Complex Dynamical System. Lecture Notes in Computer Science, 2012, , 38-49.	1. 3	3
48	Evolving Ensembles: What Can We Learn from Biological Mutualisms?. Lecture Notes in Computer Science, 2015, , 52-60.	1.3	2
49	Exploring diagnostic models of Parkinson's disease with multi-objective regression. , 2016, , .		2
50	Optimising Boolean Synthetic Regulatory Networks to Control Cell States. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2649-2658.	3.0	2
51	Significant cognitive decline in Parkinson's disease exacerbates the reliance on visual feedback during upper limb reaches. Neuropsychologia, 2021, 157, 107885.	1.6	2
52	Evolving Computational Dynamical Systems to Recognise Abnormal Human Motor Function. Lecture Notes in Computer Science, 2012, , 177-182.	1.3	2
53	Evolving Efficient Solutions to Complex Problems Using the Artificial Epigenetic Network. Lecture Notes in Computer Science, 2015, , 153-165.	1. 3	2
54	Evaluation of Recurrent Neural Network Models for Parkinson's Disease Classification Using Drawing Data., 2021, 2021, 1702-1706.		2

#	Article	IF	CITATIONS
55	Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion. Lecture Notes in Computer Science, 2015, , 114-127.	1.3	1
56	Evolving Boolean networks for biological control: State space targeting in scale free Boolean networks. , $2016, , .$		1
57	Going through directional changes. , 2017, , .		1
58	Special issue on the frontiers of natural computing. Natural Computing, 2013, 12, 441-442.	3.0	0
59	Evolutionary acquisition of complex traits in artificial epigenetic networks. BioSystems, 2019, 176, 17-26.	2.0	0