B L Ehlmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710018/publications.pdf

Version: 2024-02-01

16437 16164 15,792 157 64 124 citations h-index g-index papers 159 159 159 6170 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	6.0	687
2	Subsurface water and clay mineral formation during the early history of Mars. Nature, 2011, 479, 53-60.	13.7	651
3	Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 2008, 454, 305-309.	13.7	630
4	Orbital Identification of Carbonate-Bearing Rocks on Mars. Science, 2008, 322, 1828-1832.	6.0	560
5	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	6.0	508
6	Identification of hydrated silicate minerals on Mars using MRO RISM: Geologic context near Nili Fossae and implications for aqueous alteration. Journal of Geophysical Research, 2009, 114, .	3.3	483
7	Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 2014, 42, 291-315.	4.6	472
8	A synthesis of Martian aqueous mineralogy after $1\mathrm{Mars}$ year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2009, 114 , .	3.3	445
9	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	6.0	367
10	Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars. Science, 2008, 321, 830-833.	6.0	328
11	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	6.0	327
12	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	6.0	327
13	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	6.0	326
14	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	6.0	323
15	Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 2010, 37, .	1.5	299
16	Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geoscience, 2008, 1, 355-358.	5.4	293
17	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	6.0	280
18	Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1403-1431.	1,5	280

#	Article	IF	CITATIONS
19	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	6.0	246
20	Isotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	6.0	241
21	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 2016, 536, 54-57.	13.7	240
22	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	6.0	215
23	Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1991-2016.	1.5	214
24	Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 2017, 44, 665-671.	1.5	178
25	Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geoscience, 2010, 3, 838-841.	5.4	173
26	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	3.3	172
27	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	6.0	169
28	Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater. Science, 2004, 305, 821-824.	6.0	166
29	Compositional stratigraphy of clayâ€bearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters, 2008, 35, .	1.5	165
30	Distribution of phyllosilicates on the surface of Ceres. Science, 2016, 353, .	6.0	159
31	Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site. Science, 2004, 306, 1723-1726.	6.0	153
32	Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	148
33	Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	144
34	Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin. Journal of Geophysical Research, 2009, 114 , .	3.3	144
35	Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 64-85.	1.5	137
36	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	6.0	134

#	Article	IF	CITATIONS
37	ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.	1.6	134
38	Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum. Science, 2004, 306, 1730-1733.	6.0	130
39	Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments. Space Science Reviews, 2013, 174, 301-328.	3.7	126
40	The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets. Journal of Geophysical Research E: Planets, 2016, 121, 1713-1736.	1.5	123
41	The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American Mineralogist, 2015, 100, 824-836.	0.9	122
42	Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. Journal of Geophysical Research, 2009, 114, .	3.3	117
43	Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater. Journal of Geophysical Research E: Planets, 2014, 119, 30-46.	1.5	114
44	Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatileâ€rich igneous source. Journal of Geophysical Research E: Planets, 2014, 119, 64-81.	1.5	113
45	Orbital evidence for more widespread carbonateâ€bearing rocks on Mars. Journal of Geophysical Research E: Planets, 2016, 121, 652-677.	1.5	109
46	Geochemical Consequences of Widespread Clay Mineral Formation in Mars' Ancient Crust. Space Science Reviews, 2013, 174, 329-364.	3.7	108
47	Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays and Clay Minerals, 2011, 59, 359-377.	0.6	107
48	Imaging spectroscopy of geological samples and outcrops: Novel insights from microns to meters. GSA Today, 2015, 25, 4-10.	1.1	106
49	An interval of high salinity in ancient Gale crater lake on Mars. Nature Geoscience, 2019, 12, 889-895.	5.4	105
50	Carbon sequestration on Mars. Geology, 2015, 43, 863-866.	2.0	101
51	Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2344-2361.	1.5	98
52	Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017, 122, 2510-2543.	1.5	95
53	An inâ€situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophysical Research Letters, 2012, 39, .	1.5	94
54	Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews, 2021, 217, 1.	3.7	94

#	Article	IF	CITATIONS
55	THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES. Astrophysical Journal, 2012, 752, 7.	1.6	90
56	Tracing the fate of carbon and the atmospheric evolution of Mars. Nature Communications, 2015, 6, 10003.	5.8	90
57	Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 2021, 374, 711-717.	6.0	86
58	Nature, formation, and distribution of carbonates on Ceres. Science Advances, 2018, 4, e1701645.	4.7	83
59	The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews, 2021, 217, 24.	3.7	76
60	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	0.7	73
61	Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science, 2021, 372, 56-62.	6.0	73
62	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€like worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	1.5	72
63	Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 49-57.	1.5	71
64	ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. lcarus, 2015, 249, 74-92.	1.1	70
65	Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars. Icarus, 2013, 224, 276-285.	1.1	68
66	Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	64
67	Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visibleâ€shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover. Journal of Geophysical Research E: Planets, 2017, 122, 2489-2509.	1.5	64
68	A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nature Geoscience, 2021, 14, 127-132.	5.4	64
69	Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research, 2012, 117, .	3.3	62
70	The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue. Journal of Geophysical Research E: Planets, 2018, 123, 3-19.	1.5	62
71	Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology, 2019, 19, 1230-1262.	1.5	62
72	Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophysical Research Letters, 2014, 41, 4880-4887.	1.5	59

#	Article	lF	Citations
73	Morphologic Diversity of Martian Ripples: Implications for Largeâ€Ripple Formation. Geophysical Research Letters, 2018, 45, 10,229.	1.5	59
74	Magmatic precipitation as a possible origin of Noachian clays on Mars. Nature Geoscience, 2012, 5, 739-743.	5.4	58
75	Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. Journal of Geophysical Research E: Planets, 2017, 122, 744-770.	1.5	57
76	Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for the Mars Science Laboratory Curiosity's exploration. Geophysical Research Letters, 2015, 42, 264-273.	1.5	55
77	Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. Geophysical Research Letters, 2019, 46, 10754-10763.	1.5	52
78	Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.	1.5	51
79	Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters. American Mineralogist, 2016, 101, 1527-1542.	0.9	51
80	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
81	The stratigraphy and history of Mars' northern lowlands through mineralogy of impact craters: A comprehensive survey. Journal of Geophysical Research E: Planets, 2017, 122, 1824-1854.	1.5	49
82	Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse. Journal of Geophysical Research E: Planets, 2015, 120, 1396-1414.	1.5	48
83	Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162.	1.5	46
84	Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars. American Mineralogist, 2017, 102, 1202-1217.	0.9	43
85	MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars With DISORT-Based Radiative Transfer Modeling: Phase 1—Using Historical Climatology for Temperatures, Aerosol Optical Depths, and Atmospheric Pressures. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 4020-4040.	2.7	41
86	Visible/nearâ€infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2655-2684.	1.5	40
87	Challenges in the Search for Perchlorate and Other Hydrated Minerals With 2.1â€Î¼m Absorptions on Mars. Geophysical Research Letters, 2018, 45, 12180-12189.	1.5	40
88	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	1.5	40
89	In Situ Analysis of Opal in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1955-1972.	1.5	36
90	A probabilistic approach to remote compositional analysis of planetary surfaces. Journal of Geophysical Research E: Planets, 2017, 122, 983-1009.	1.5	34

#	Article	IF	Citations
91	Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 2019, 318, 42-55.	1.1	34
92	Compositional differences among Bright Spots on the Ceres surface. Icarus, 2019, 320, 202-212.	1.1	33
93	Detection of iron substitution in natroalunite-natrojarosite solid solutions and potential implications for Mars. American Mineralogist, 2014, 99, 948-964.	0.9	32
94	Long-runout landslides and the long-lasting effects of early water activity on Mars. Geology, 2015, 43, 107-110.	2.0	32
95	Characterization of Hydrogen in Basaltic Materials With Laserâ€Induced Breakdown Spectroscopy (<scp>LIBS</scp>) for Application to <scp>MSL</scp> ChemCam Data. Journal of Geophysical Research E: Planets, 2018, 123, 1996-2021.	1.5	32
96	Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater, Mars. American Mineralogist, 2016, 101, 1501-1514.	0.9	31
97	Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Science Reviews, 2021, 217, 29.	3.7	31
98	Ultra-compact imaging spectrometer for remote, <i>in situ</i> , and microscopic planetary mineralogy. Journal of Applied Remote Sensing, 2014, 8, 084988.	0.6	30
99	The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits. Planetary and Space Science, 2020, 184, 104841.	0.9	30
100	Hydrothermal activity recorded in post Noachianâ€aged impact craters on Mars. Journal of Geophysical Research E: Planets, 2016, 121, 608-625.	1.5	29
101	Ambient and coldâ€temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other solar system bodies. Meteoritics and Planetary Science, 2018, 53, 1884-1901.	0.7	27
102	Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Science Reviews, 2020, 216, 1.	3.7	27
103	Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units. Journal of Geophysical Research E: Planets, 2017, 122, 1090-1118.	1.5	26
104	Regional Structural Orientation of the Mount Sharp Group Revealed by In Situ Dip Measurements and Stratigraphic Correlations on the Vera Rubin Ridge. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006298.	1.5	26
105	Spectrally distinct ejecta in Syrtis Major, Mars: Evidence for environmental change at the Hesperianâ€Amazonian boundary. Journal of Geophysical Research, 2010, 115, .	3.3	23
106	A deep-ultraviolet Raman and Fluorescence spectral library of 62 minerals for the SHERLOC instrument onboard Mars 2020. Planetary and Space Science, 2021, 209, 105356.	0.9	21
107	Geology of possible Martian methane source regions. Planetary and Space Science, 2011, 59, 196-202.	0.9	20
108	Composition, Stratigraphy, and Geological History of the Noachian Basement Surrounding the Isidis Impact Basin. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006190.	1.5	20

#	Article	IF	Citations
109	The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars. Astrobiology, 2014, 14, 292-307.	1.5	19
110	Evidence for Deposition of Chloride on Mars From Smallâ€Volume Surface Water Events Into the Late Hesperianâ€Early Amazonian. AGU Advances, 2022, 3, .	2.3	19
111	Studies of a Lacustrineâ€Volcanic Mars Analog Field Site With Marsâ€2020â€Like Instruments. Earth and Space Science, 2020, 7, e2019EA000720.	1.1	18
112	Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature Communications, 2017, 8, 1230.	5.8	17
113	Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs. Astrophysical Journal, 2017, 846, 148.	1.6	17
114	Bagnold Dunes Campaign Phase 2: Visible/Nearâ€Infrared Reflectance Spectroscopy of Longitudinal Ripple Sands. Geophysical Research Letters, 2018, 45, 9480-9487.	1.5	17
115	Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans. Astrophysical Journal, 2018, 856, 124.	1.6	15
116	Synthesis and characterization of Fe(III)-Fe(II)-Mg-Al smectite solid solutions and implications for planetary science. American Mineralogist, 2021, 106, 964-982.	0.9	15
117	ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER TROJAN ASTEROIDS. Astrophysical Journal, 2016, 820, 141.	1.6	13
118	A PCAâ€Based Framework for Determining Remotely Sensed Geological Surface Orientations and Their Statistical Quality. Earth and Space Science, 2019, 6, 1378-1408.	1.1	13
119	Hubble Ultraviolet Spectroscopy of Jupiter Trojans. Astronomical Journal, 2019, 157, 161.	1.9	13
120	Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, northern plains, Mars. Geophysical Research Letters, 2014, 41, 1890-1898.	1.5	12
121	Healthy debate on early Mars. Nature Geoscience, 2018, 11, 888-888.	5.4	12
122	The Deposition and Alteration History of the Northeast Syrtis Major Layered Sulfates. Journal of Geophysical Research E: Planets, 2019, 124, 1743-1782.	1.5	12
123	Hydrogen Variability in the Murray Formation, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006289.	1.5	12
124	Formation of Magnesium Carbonates on Earth and Implications for Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006828.	1.5	12
125	A Probabilistic Approach to Determination of Ceres' Average Surface Composition From Dawn Visibleâ€Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector Data. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006606.	1.5	11
126	Generalized Unsupervised Clustering of Hyperspectral Images of Geological Targets in the Near Infrared. , 2021, , .		11

#	Article	IF	CITATIONS
127	Distant Formation and Differentiation of Outer Main Belt Asteroids and Carbonaceous Chondrite Parent Bodies. AGU Advances, 2022, 3, .	2.3	11
128	Exploring the Shallow Subsurface of Mars with the Ma_MISS Spectrometer on the ExoMars Rover Rosalind Franklin. Planetary Science Journal, 2022, 3, 142.	1.5	9
129	Photometric characterization of Lucideon and Avian Technologies color standards including application for calibration of the Mastcam-Z instrument on the Mars 2020 rover. Optical Engineering, 2019, 58, 1.	0.5	8
130	Hydrothermal Alteration of the Ocean Crust and Patterns in Mineralization With Depth as Measured by Microâ€Imaging Infrared Spectroscopy. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021976.	1.4	7
131	Mineralogy and chemistry of San Carlos high-alkali basalts: Analyses of alteration with application for Mars exploration. American Mineralogist, 2017, 102, 284-301.	0.9	6
132	Visible to Short-Wave Infrared Spectral Analyses of Mars from Orbit Using CRISM and OMEGA. , 2019, , 453-483.		6
133	Compositional Heterogeneity of Impact Melt Rocks at the Haughton Impact Structure, Canada: Implications for Planetary Processes and Remote Sensing. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006218.	1.5	6
134	Spatiotemporal evolution, mineralogical composition, and transport mechanisms of long-runout landslides in Valles Marineris, Mars. Icarus, 2020, 350, 113836.	1.1	6
135	In Situ Geochronology for the Next Decade: Mission Designs for the Moon, Mars, and Vesta. Planetary Science Journal, 2021, 2, 145.	1.5	6
136	Identifying and quantifying mineral abundance through VSWIR microimaging spectroscopy: A comparison to XRD and SEM. , 2016, , .		5
137	A machine learning toolkit for CRISM image analysis. Icarus, 2022, 376, 114849.	1.1	5
138	Origin of the degassing pipes at the Ries impact structure and implications for impactâ€induced alteration on Mars and other planetary bodies. Meteoritics and Planetary Science, 2021, 56, 404-422.	0.7	4
139	Rare jarosite detection in crism imagery by non-parametric Bayesian clustering. , 2016, , .		3
140	Aqueous Processes From Diverse Hydrous Minerals in the Vicinity of Amazonianâ€Aged Lyot Crater. Journal of Geophysical Research E: Planets, 2018, 123, 1618-1648.	1.5	3
141	Electronic Spectra of Minerals in the Visible and Near-Infrared Regions. , 2019, , 3-20.		3
142	Effect of H ₂ S on the Near-infrared Spectrum of Irradiation Residue and Applications to the Kuiper Belt Object (486958) Arrokoth. Astrophysical Journal Letters, 2021, 914, L31.	3.0	3
143	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES., 2017,,.		3
144	Tracing Carbonate Formation, Serpentinization, and Biological Materials With Micro†Meso†Scale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. Earth and Space Science, 2021, 8, e2021EA001637.	1.1	3

#	Article	IF	CITATIONS
145	Characterizing low-temperature aqueous alteration of Mars-analog basalts from Mauna Kea at multiple scales. American Mineralogist, 2020, 105, 1306-1316.	0.9	2
146	The Mars Orbiter for Resources, Ices, and Environments (MORIE) Science Goals and Instrument Trades in Radar, Imaging, and Spectroscopy. Planetary Science Journal, 2021, 2, 76.	1.5	2
147	Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments. Space Sciences Series of ISSI, 2012, , 301-328.	0.0	2
148	Confronting Racism to Advance Our Science. AGU Advances, 2021, 2, e2020AV000296.	2.3	1
149	Controls on the Global Distribution of Martian Landslides. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006675.	1.5	1
150	Characterizing Hydration of the Ocean Crust Using Shortwave Infrared Microimaging Spectroscopy of ICDP Oman Drilling Project Cores. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022676.	1.4	1
151	Thank You to Our 2019 Reviewers. AGU Advances, 2020, 1, e2020AV000181.	2.3	0
152	AGU Advances Goes Online. AGU Advances, 2020, 1, e2019AV000105.	2.3	0
153	Thank You to Our 2020 Peer Reviewers. AGU Advances, 2021, 2, e2021AV000426.	2.3	0
154	Geochemical Consequences of Widespread Clay Mineral Formation in Mars' Ancient Crust. Space Sciences Series of ISSI, 2012, , 329-364.	0.0	0
155	Ammonia on Ceres. , 2022, , 134-142.		0
156	Thank You to Our 2021 Peer Reviewers. AGU Advances, 2022, 3, .	2.3	0
157	Mid- and long-wave infrared point spectrometer (MLPS): a miniature space-borne science instrument. Optics Express, 2022, 30, 17476.	1.7	0