Kewang Nan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3709883/kewang-nan-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24	1,991	19	25
papers	citations	h-index	g-index
25	2,233 ext. citations	13.2	4.17
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
24	Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects. <i>Advanced Materials</i> , 2019 , 31, e1905715	24	27
23	Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films. <i>ACS Nano</i> , 2019 , 13, 449-457	16.7	16
22	Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants. <i>ACS Nano</i> , 2019 , 13, 660-670	16.7	24
21	Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. <i>Advanced Materials</i> , 2019 , 31, e1805615	24	72
20	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. <i>Nature Communications</i> , 2018 , 9, 1417	17.4	136
19	Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. <i>Nature Materials</i> , 2018 , 17, 268-276	27	216
18	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. <i>Science Advances</i> , 2018 , 4, eaau5849	14.3	147
17	Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 160	o 5 544	39
16	Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017 , 13, 1700151	11	25
15	Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. <i>Extreme Mechanics Letters</i> , 2017 , 11, 96-104	3.9	56
14	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9455-E9464	11.5	104
13	Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. <i>Advanced Biology</i> , 2017 , 1, 1700068	3.5	12
12	Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 1604281	15.6	41
11	Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. <i>Extreme Mechanics Letters</i> , 2017 , 11, 105-110	3.9	40
10	Synthesis, Assembly, and Applications of Semiconductor Nanomembranes 2016 , 1-36		1
9	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152
8	3D Assembly: Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials (Adv. Funct. Mater. 16/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 2586-2586	15.6	

LIST OF PUBLICATIONS

7	Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. <i>ACS Applied Materials & Deicing of Surfaces</i> , 2016 , 8, 3551-6	9.5	80
6	Mismatch strain programmed shape transformation of curved bilayer-flexible support assembly. <i>Extreme Mechanics Letters</i> , 2016 , 7, 34-41	3.9	15
5	Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation. <i>Advanced Functional Materials</i> , 2016 , 26, 2909-2918	15.6	57
4	Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. <i>Advanced Functional Materials</i> , 2016 , 26, 2629-2639	15.6	188
3	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11757-64	11.5	344
2	Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High-Performance Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 2044-2048	15.6	142
1	Silver-Graphene Nanoribbon Composite Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte. <i>Electroanalysis</i> , 2014 , 26, 164-170	3	56