Sari Pennings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3709421/publications.pdf

Version: 2024-02-01

840776 1058476 14 641 11 14 citations h-index g-index papers 14 14 14 1418 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activation of transcription factor circuity in 2i-induced ground state pluripotency is independent of repressive global epigenetic landscapes. Nucleic Acids Research, 2020, 48, 7748-7766.	14.5	5
2	DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency. Cell Reports, 2019, 29, 1974-1985.e6.	6.4	76
3	DNA methylation as a genomic marker of exposure to chemical and environmental agents. Current Opinion in Chemical Biology, 2018, 45, 48-56.	6.1	55
4	Antibody-Based Detection of Global Nuclear DNA Methylation in Cells, Tissue Sections, and Mammalian Embryos. Methods in Molecular Biology, 2018, 1708, 59-80.	0.9	7
5	The Stem Cell Niche: Interactions between Stem Cells and Their Environment. Stem Cells International, 2018, 2018, 1-3.	2.5	46
6	Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells International, 2018, 2018, 1-13.	2.5	23
7	Shoring up <scp>DNA</scp> methylation and H3K27me3 domain demarcation at developmental genes. EMBO Journal, 2017, 36, 3407-3408.	7.8	9
8	Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed <i>FLO1</i> gene. Nucleic Acids Research, 2017, 45, gkx028.	14.5	29
9	Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. Genome Biology, 2015, 16, 11.	8.8	137
10	The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1242-1255.	1.9	39
11	Histone H4K20me3 and HP1 \hat{I} ± are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. Journal of Cell Science, 2011, 124, 1878-1890.	2.0	79
12	Tup 1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene. Nucleic Acids Research, 2007, 35, 5520-5531.	14.5	22
13	Epigenetic silencing in embryogenesis. Experimental Cell Research, 2005, 309, 241-249.	2.6	24
14	Antagonistic remodelling by Swi–Snf and Tup1–Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO Journal, 2001, 20, 5219-5231.	7.8	90