
Vicente Julian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3709182/publications.pdf Version: 2024-02-01

VICENTE IIIIAN

#	Article	IF	CITATIONS
1	Smart Cyber Victimization Discovery on Twitter. Lecture Notes in Networks and Systems, 2022, , 289-299.	0.7	5
2	Charging stations and mobility data generators for agent-based simulations. Neurocomputing, 2022, 484, 196-210.	5.9	2
3	Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education. Electronics (Switzerland), 2022, 11, 457.	3.1	9
4	Developing IoT Artifacts in a MAS Platform. Electronics (Switzerland), 2022, 11, 655.	3.1	9
5	Toward Autonomous and Distributed Intersection Management with Emergency Vehicles. Electronics (Switzerland), 2022, 11, 1089.	3.1	5
6	FLaMAS: Federated Learning Based on a SPADE MAS. Applied Sciences (Switzerland), 2022, 12, 3701.	2.5	8
7	Electric vehicle charging stations emplacement using genetic algorithms and agent-based simulation. Expert Systems With Applications, 2022, 197, 116739.	7.6	23
8	Demand-Responsive Shared Transportation: A Self-Interested Proposal. Electronics (Switzerland), 2022, 11, 78.	3.1	4
9	Taxi services and the carsharing alternative: a case study of valencia city. Mathematical Biosciences and Engineering, 2022, 19, 6680-6698.	1.9	6
10	A CBR for integrating sentiment and stress analysis for guiding users on social network sites. Expert Systems With Applications, 2022, 208, 118103.	7.6	2
11	An agent-based simulation framework for the study of urban delivery. Neurocomputing, 2021, 423, 679-688.	5.9	9
12	Social and intelligent applications for future cities: Current advances. Future Generation Computer Systems, 2021, 114, 181-184.	7.5	5
13	Localization of charging stations for electric vehicles using genetic algorithms. Neurocomputing, 2021, 452, 416-423.	5.9	14
14	Autonomous Distributed Intersection Management for Emergency Vehicles at Intersections. Communications in Computer and Information Science, 2021, , 261-269.	0.5	3
15	Edge Al for Covid-19 Detection Using Coughing. Lecture Notes in Computer Science, 2021, , 576-587.	1.3	0
16	Interurban Electric Vehicle Charging Stations Through Genetic Algorithms. Lecture Notes in Computer Science, 2021, , 101-112.	1.3	3
17	Comparison of Predictive Models with Balanced Classes for the Forecast of Student Dropout in Higher Education. Communications in Computer and Information Science, 2021, , 139-152.	0.5	0
18	Nego-Bot: A Human-Robot Negotiation System. Lecture Notes in Computer Science, 2021, , 376-379.	1.3	0

#	Article	IF	CITATIONS
19	Can Social Agents Efficiently Perform in Automated Negotiation?. Applied Sciences (Switzerland), 2021, 11, 6022.	2.5	6
20	Classification of educational videos by using a semi-supervised learning method on transcripts and keywords. Neurocomputing, 2021, , .	5.9	5
21	ME3CA - Monitoring Environment Exercise and Emotion by a Cognitive Assistant. Advances in Intelligent Systems and Computing, 2020, , 128-135.	0.6	1
22	A robustness approach to the distributed management of traffic intersections. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 4501-4512.	4.9	7
23	A Review on MAS-Based Sentiment and Stress Analysis User-Guiding and Risk-Prevention Systems in Social Network Analysis. Applied Sciences (Switzerland), 2020, 10, 6746.	2.5	1
24	SPADE 3: Supporting the New Generation of Multi-Agent Systems. IEEE Access, 2020, 8, 182537-182549.	4.2	40
25	Recommending Learning Objects with Arguments and Explanations. Applied Sciences (Switzerland), 2020, 10, 3341.	2.5	4
26	A Multi-Agent System for guiding users in on-line social environments. Engineering Applications of Artificial Intelligence, 2020, 94, 103740.	8.1	5
27	Using Keystroke Dynamics in a Multi-Agent System for User Guiding in Online Social Networks. Applied Sciences (Switzerland), 2020, 10, 3754.	2.5	7
28	A Low-Cost Cognitive Assistant. Electronics (Switzerland), 2020, 9, 310.	3.1	2
29	ME3CA: A Cognitive Assistant for Physical Exercises that Monitors Emotions and the Environment. Sensors, 2020, 20, 852.	3.8	2
30	Load Generators for Automatic Simulation of Urban Fleets. Communications in Computer and Information Science, 2020, , 394-405.	0.5	4
31	Free-Floating Carsharing in SimFleet. Lecture Notes in Computer Science, 2020, , 221-232.	1.3	3
32	An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors, 2020, 20, 7353.	3.8	27
33	An Intelligent Platform for Supporting Optimized Collaborative Urban Logistics. Studies in Computational Intelligence, 2020, , 3-14.	0.9	1
34	Requirements for an Intelligent Maintenance System for Industry 4.0. Studies in Computational Intelligence, 2020, , 340-351.	0.9	5
35	Towards the Edge Intelligence: Robot Assistant for the Detection and Classification of Human Emotions. Communications in Computer and Information Science, 2020, , 31-41.	0.5	2
36	LSI Based Mechanism for Educational Videos Retrieval by Transcripts Processing. Lecture Notes in Computer Science, 2020, , 88-100.	1.3	2

#	Article	IF	CITATIONS
37	Towards a Dynamic Edge Al Framework Applied to Autonomous Driving Cars. Communications in Computer and Information Science, 2020, , 406-415.	0.5	1
38	Fatigue Detection in Strength Exercises for Older People. Lecture Notes in Computer Science, 2020, , 233-244.	1.3	0
39	Agreement Technologies for Conflict Resolution. , 2020, , 464-484.		0
40	A new emotional robot assistant that facilitates human interaction and persuasion. Knowledge and Information Systems, 2019, 60, 363-383.	3.2	37
41	SimFleet: A New Transport Fleet Simulator Based on MAS. Communications in Computer and Information Science, 2019, , 257-264.	0.5	12
42	EMERALD—Exercise Monitoring Emotional Assistant. Sensors, 2019, 19, 1953.	3.8	8
43	Multi-Agent Systems. Applied Sciences (Switzerland), 2019, 9, 1402.	2.5	26
44	Improving the programming skills of students in multiagent systems master courses. Computer Applications in Engineering Education, 2019, 27, 836-845.	3.4	2
45	Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach. Energies, 2019, 12, 662.	3.1	8
46	An Abstract Framework for Non-Cooperative Multi-Agent Planning. Applied Sciences (Switzerland), 2019, 9, 5180.	2.5	3
47	Automatic Categorization of Educational Videos According to Learning Styles. , 2019, , .		2
48	Video Transcript Indexing and Retrieval Procedure. , 2019, , .		1
49	A near Pareto optimal approach to student–supervisor allocation with two sided preferences and workload balance. Applied Soft Computing Journal, 2019, 76, 1-15.	7.2	15
50	MAMbO5: a new ontology approach for modelling and managing intelligent virtual environments based on multi-agent systems. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 3629-3641.	4.9	8
51	Emotions detection on an ambient intelligent system using wearable devices. Future Generation Computer Systems, 2019, 92, 479-489.	7.5	43
52	Distributed Management of Traffic Intersections. Advances in Intelligent Systems and Computing, 2019, , 56-64.	0.6	5
53	A Semi-supervised Method to Classify Educational Videos. Lecture Notes in Computer Science, 2019, , 218-228.	1.3	3
54	Using Genetic Algorithms to Optimize the Location of Electric Vehicle Charging Stations. Advances in Intelligent Systems and Computing, 2019, , 11-20.	0.6	8

#	Article	IF	CITATIONS
55	Towards a Custom Designed Mechanism for Indexing and Retrieving Video Transcripts. Lecture Notes in Computer Science, 2019, , 299-309.	1.3	1
56	A Computer-Based Support System for Cooperative Tasks in Nursing Homes. International Journal of Computational Intelligence Systems, 2019, 12, 661.	2.7	0
57	EMiR 2.0: A Cognitive Assistant Robot for Elderly. Lecture Notes in Computer Science, 2019, , 273-276.	1.3	0
58	Towards a Robotic Personal Trainer for the Elderly. Lecture Notes in Computer Science, 2019, , 238-246.	1.3	1
59	Activities suggestion based on emotions in AAL environments. Artificial Intelligence in Medicine, 2018, 86, 9-19.	6.5	8
60	The Information Flow Problem in multi-agent systems. Engineering Applications of Artificial Intelligence, 2018, 70, 130-141.	8.1	11
61	Designing a goal-oriented smart-home environment. Information Systems Frontiers, 2018, 20, 125-142.	6.4	20
62	Introducing dynamism in emotional agent societies. Neurocomputing, 2018, 272, 27-39.	5.9	13
63	The JaCalIVE framework for MAS in IVE: A case study in evolving modular robotics. Neurocomputing, 2018, 275, 608-617.	5.9	5
64	A Survey of Cognitive Assistants. Intelligent Systems Reference Library, 2018, , 3-16.	1.2	11
65	A Crowdsourcing Approach for Sustainable Last Mile Delivery. Sustainability, 2018, 10, 4563.	3.2	38
66	A genetic algorithm for group formation in elderly communities. AI Communications, 2018, 31, 409-425.	1.2	3
67	Detecting emotions through non-invasive wearables. Logic Journal of the IGPL, 2018, , .	1.5	7
68	Survivability Prediction of Colorectal Cancer Patients: A System with Evolving Features for Continuous Improvement. Sensors, 2018, 18, 2983.	3.8	8
69	How to Choose the Greenest Delivery Plan: A Framework to Measure Key Performance Indicators for Sustainable Urban Logistics. IFIP Advances in Information and Communication Technology, 2018, , 181-189.	0.7	1
70	Cognitive assistants. International Journal of Human Computer Studies, 2018, 117, 1-3.	5.6	9
71	A Multi-Agent System for the Dynamic Emplacement of Electric Vehicle Charging Stations. Applied Sciences (Switzerland), 2018, 8, 313.	2.5	21
72	Towards Aiding Decision-Making in Social Networks by Using Sentiment and Stress Combined Analysis. Information (Switzerland), 2018, 9, 107.	2.9	5

#	Article	IF	CITATIONS
73	PHAROS—PHysical Assistant RObot System. Sensors, 2018, 18, 2633.	3.8	49
74	The Multi-agent Layer of CALMeD SURF. Lecture Notes in Computer Science, 2018, , 446-460.	1.3	3
75	Station Status Forecasting Module for a Multi-agent Proposal to Improve Efficiency on Bike-Sharing Usage. Lecture Notes in Computer Science, 2018, , 476-489.	1.3	2
76	Intelligent Wristbands for the Automatic Detection of Emotional States for the Elderly. Lecture Notes in Computer Science, 2018, , 520-530.	1.3	8
77	Rethinking Posts Through Emotion Awareness. Advances in Intelligent Systems and Computing, 2018, , 262-263.	0.6	Ο
78	Analyzing the Repercussions of the Actions Based on the Emotional State in Social Networks. Lecture Notes in Computer Science, 2018, , 523-537.	1.3	0
79	Data Protection in Elderly Health Care Platforms. Lecture Notes in Computer Science, 2018, , 233-244.	1.3	0
80	A legal framework for an elderly healthcare platform: A privacy and data protection overview. Computer Law and Security Review, 2017, 33, 647-658.	2.2	8
81	Advances and trends for the development of ambientâ€assisted living platforms. Expert Systems, 2017, 34, e12163.	4.5	20
82	Transport Network Analysis for Smart Open Fleets. Communications in Computer and Information Science, 2017, , 433-444.	0.5	0
83	Using Argumentation to Persuade Students in an Educational Recommender System. Lecture Notes in Computer Science, 2017, , 227-239.	1.3	5
84	Argumentation Schemes for Events Suggestion in an e-Health Platform. Lecture Notes in Computer Science, 2017, , 17-30.	1.3	11
85	Influencing over people with a social emotional model. Neurocomputing, 2017, 231, 47-54.	5.9	10
86	Coordinating open fleets. AÂtaxiÂassignmentÂexample. Al Communications, 2017, 30, 37-52.	1.2	10
87	An educational recommender system based on argumentation theory. Al Communications, 2017, 30, 19-36.	1.2	13
88	A Multi-agent Proposal for Efficient Bike-Sharing Usage. Lecture Notes in Computer Science, 2017, , 468-476.	1.3	1
89	Using Non-invasive Wearables for Detecting Emotions with Intelligent Agents. Advances in Intelligent Systems and Computing, 2017, , 73-84.	0.6	8
90	Developing emotional intelligent virtual environments using EJaCalIVE. , 2017, , .		0

#	Article	IF	CITATIONS
91	Using Emotions in Intelligent Virtual Environments: The EJaCalIVE Framework. Wireless Communications and Mobile Computing, 2017, 2017, 1-9.	1.2	4
92	Using Argumentation Schemes for a Persuasive Cognitive Assistant System. Lecture Notes in Computer Science, 2017, , 538-546.	1.3	4
93	A Task Recommendation System for Children and Youth with Autism Spectrum Disorder. Advances in Intelligent Systems and Computing, 2017, , 87-94.	0.6	9
94	Training Emotional Robots Using EJaCalIVE. Lecture Notes in Computer Science, 2017, , 346-349.	1.3	0
95	Vascular Contraction Model Based on Multi-agent Systems. Advances in Intelligent Systems and Computing, 2017, , 205-212.	0.6	0
96	Using Genetic Algorithms for Group Activities in Elderly Communities. Lecture Notes in Computer Science, 2017, , 524-537.	1.3	0
97	A Multi-Agent System to Improve Mobile Robot Localization. Lecture Notes in Computer Science, 2017, , 471-482.	1.3	0
98	Multi-agent System for Privacy Protection Through User Emotions in Social Networks. Communications in Computer and Information Science, 2017, , 235-245.	0.5	0
99	Dynamic Monitoring in PANGEA Platform Using Event-Tracing Mechanisms. Computing and Informatics, 2017, 36, 1019-1040.	0.7	0
100	A Dynamic Emotional Model for Agent Societies. Lecture Notes in Computer Science, 2016, , 169-182.	1.3	6
101	An Agent-Based Application for Automatic Classification of Food Allergies and Intolerances in Recipes. Lecture Notes in Computer Science, 2016, , 3-12.	1.3	0
102	Argumentation-Based Hybrid Recommender System for Recommending Learning Objects. Lecture Notes in Computer Science, 2016, , 234-248.	1.3	7
103	Application of Genetic Algorithms and Heuristic Techniques for the Identification and Classification of the Information Used by a Recipe Recommender. Lecture Notes in Computer Science, 2016, , 201-212.	1.3	3
104	Rainfall Prediction: A Deep Learning Approach. Lecture Notes in Computer Science, 2016, , 151-162.	1.3	63
105	Using emotions for the development of human-agent societies. Frontiers of Information Technology and Electronic Engineering, 2016, 17, 325-337.	2.6	7
106	Developing an emotional-based application for human-agent societies. Soft Computing, 2016, 20, 4217-4228.	3.6	1
107	Towards Smart Open Dynamic Fleets. Lecture Notes in Computer Science, 2016, , 410-424.	1.3	11
108	A Persuasive Cognitive Assistant System. Advances in Intelligent Systems and Computing, 2016, , 151-160.	0.6	8

#	Article	IF	CITATIONS
109	A General Framework for Testing Different Student Team Formation Strategies. Advances in Intelligent Systems and Computing, 2016, , 23-31.	0.6	7
110	Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments. PLoS ONE, 2016, 11, e0149665.	2.5	13
111	An Agent-Based Approach for a Smart Transport System. Advances in Distributed Computing and Artificial Intelligence Journal, 2016, 5, 67-87.	1.5	4
112	From Virtual to Real, Human Interaction as a Validation Process for IVEs. Studies in Computational Intelligence, 2016, , 49-59.	0.9	0
113	A Mobile and Evolving Tool to Predict Colorectal Cancer Survivability. IFIP Advances in Information and Communication Technology, 2016, , 14-26.	0.7	3
114	Automatic Detection System for Food Allergies and Intolerances in Recipes. Lecture Notes in Computer Science, 2016, , 235-238.	1.3	1
115	Agreement Technologies for Conflict Resolution. Advances in Linguistics and Communication Studies, 2016, , 147-167.	0.2	0
116	An Infrastructure for Argumentative Agents. Computational Intelligence, 2015, 31, 418-441.	3.2	1
117	Towards persuasive social recommendation. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2015, 15, 41-49.	0.9	4
118	Real-time agreement and fulfilment of SLAs in Cloud Computing environments. Al Communications, 2015, 28, 403-426.	1.2	3
119	Applying a Social Emotional Model in Human-Agent Societies. Communications in Computer and Information Science, 2015, , 377-388.	0.5	3
120	An ontological-based knowledge-representation formalism for case-based argumentation. Information Systems Frontiers, 2015, 17, 779-798.	6.4	6
121	Agent reactive capabilities in dynamic environments. Neurocomputing, 2015, 163, 69-75.	5.9	2
122	Using graph-based models in a persuasive social recommendation system. , 2015, , .		1
123	An Emotional-Based Hybrid Application forÂHuman-Agent Societies. Advances in Intelligent Systems and Computing, 2015, , 203-213.	0.6	4
124	AN INTELLIGENT SELF-CONFIGURABLE MECHANISM FOR DISTRIBUTED ENERGY STORAGE SYSTEMS. Cybernetics and Systems, 2014, 45, 292-305.	2.5	0
125	GUEST EDITORIAL: COMPUTATIONAL APPROACHES FOR CONFLICT RESOLUTION IN DECISION MAKING: NEW ADVANCES AND DEVELOPMENTS. Cybernetics and Systems, 2014, 45, 217-221.	2.5	2
126	AGENT-BASED SIMULATION FOR BORDER CROSSING MODELING. Cybernetics and Systems, 2014, 45, 650-670.	2.5	3

#	Article	IF	CITATIONS
127	Challenges for adaptation in agent societies. Knowledge and Information Systems, 2014, 38, 1-34.	3.2	2
128	receteame.com: A Persuasive Social Recommendation System. Lecture Notes in Computer Science, 2014, , 367-370.	1.3	5
129	Modelling dialogues in agent societies. Engineering Applications of Artificial Intelligence, 2014, 34, 208-226.	8.1	4
130	An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 2014, 16, 239-256.	6.4	2
131	An Architecture Proposal for Human-Agent Societies. Communications in Computer and Information Science, 2014, , 344-357.	0.5	5
132	Unanimously acceptable agreements for negotiation teams in unpredictable domains. Electronic Commerce Research and Applications, 2014, 13, 243-265.	5.0	16
133	Easy Development and Use of Dialogue Services. Advances in Intelligent Systems and Computing, 2014, , 81-88.	0.6	1
134	A CBR-Based Game Recommender for Rehabilitation Videogames in Social Networks. Lecture Notes in Computer Science, 2014, , 370-377.	1.3	6
135	Intra-Team Strategies for Teams Negotiating Against Competitor, Matchers, and Conceders. Studies in Computational Intelligence, 2014, , 3-22.	0.9	2
136	Using Natural Interfaces for Human-Agent Immersion. Communications in Computer and Information Science, 2014, , 358-367.	0.5	5
137	Studying the impact of negotiation environments on negotiation teams' performance. Information Sciences, 2013, 219, 17-40.	6.9	17
138	Multidimensional Adaptation in MAS Organizations. IEEE Transactions on Cybernetics, 2013, 43, 622-633.	9.5	2
139	Tasks for agent-based negotiation teams: Analysis, review, and challenges. Engineering Applications of Artificial Intelligence, 2013, 26, 2480-2494.	8.1	27
140	Towards real-time agreements. Expert Systems With Applications, 2013, 40, 3906-3917.	7.6	6
141	Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions. Information Sciences, 2013, 222, 25-46.	6.9	24
142	Case-based strategies for argumentation dialogues in agent societies. Information Sciences, 2013, 223, 1-30.	6.9	13
143	Using cost-aware transitions for reorganizing multiagent systems. Engineering Applications of Artificial Intelligence, 2013, 26, 63-75.	8.1	4
144	RT-MOVICAB-IDS: Addressing real-time intrusion detection. Future Generation Computer Systems, 2013, 29, 250-261.	7.5	33

#	Article	IF	CITATIONS
145	Deadline prediction scheduling based on benefits. Future Generation Computer Systems, 2013, 29, 61-73.	7.5	5
146	Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 2013, 54, 82-108.	3.3	26
147	Research opportunities for argumentation in social networks. Artificial Intelligence Review, 2013, 39, 39-62.	15.7	19
148	TOWARDS THE DEVELOPMENT OF AGENT-BASED ORGANIZATIONS THROUGH MDD. International Journal on Artificial Intelligence Tools, 2013, 22, 1350002.	1.0	3
149	A Self-configurable Agent-Based System for Intelligent Storage in Smart Grid. Communications in Computer and Information Science, 2013, , 240-250.	0.5	5
150	ArgCBROnto: A Knowledge Representation Formalism for Case-Based Argumentation. Lecture Notes in Computer Science, 2013, , 105-119.	1.3	4
151	Simulating a Collective Intelligence Approach to Student Team Formation. Lecture Notes in Computer Science, 2013, , 161-170.	1.3	7
152	ArgCBR-CallCentre: A Call Centre Based on CBR Argumentative Agents. Lecture Notes in Computer Science, 2013, , 292-295.	1.3	0
153	Mathematical model for a temporal-bounded classifier in security environments. Logic Journal of the IGPL, 2012, 20, 712-721.	1.5	4
154	A New Deliberation Mechanism for Service-Oriented Operating Systems. , 2012, , .		0
155	Reaching Unanimous Agreements Within Agent-Based Negotiation Teams With Linear and Monotonic Utility Functions. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 778-792.	5.0	17
156	Agreement technologies and their use in cloud computing environments. Progress in Artificial Intelligence, 2012, 1, 277-290.	2.4	35
157	Temporal bounded reasoning in a dynamic case based planning agent for industrial environments. Expert Systems With Applications, 2012, 39, 7887-7894.	7.6	7
158	Distributed goal-oriented computing. Journal of Systems and Software, 2012, 85, 1540-1557.	4.5	4
159	Argument-based agreements in agent societies. Neurocomputing, 2012, 75, 156-162.	5.9	13
160	Developing Pervasive Systems as Service-Oriented Multi-Agent Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 78-89.	0.3	3
161	Case-Based Argumentation Infrastructure for Agent Societies. Lecture Notes in Computer Science, 2012, , 13-24.	1.3	0
162	Agent Capability Taxonomy for Dynamic Environments. Lecture Notes in Computer Science, 2012, , 37-48.	1.3	0

#	Article	IF	CITATIONS
163	Cost-Aware Reorganization Service for Multiagent Systems. Lecture Notes in Computer Science, 2012, , 442-456.	1.3	2
164	Modeling an Operating System Based on Agents. Lecture Notes in Computer Science, 2012, , 588-599.	1.3	0
165	Tools to support the creation and management of Real-Time Multi-Agent Systems. , 2011, , .		0
166	GORMAS: An Organizational-Oriented Methodological Guideline for Open MAS. Lecture Notes in Computer Science, 2011, , 32-47.	1.3	16
167	ABC4MAS: Assembling Business Collaborations for MAS. , 2011, , .		1
168	TRAMMAS: A tracing model for multiagent systems. Engineering Applications of Artificial Intelligence, 2011, 24, 1110-1119.	8.1	9
169	Real-time CBR-agent with a mixture of experts in the reuse stage to classify and detect DoS attacks. Applied Soft Computing Journal, 2011, 11, 4384-4398.	7.2	10
170	An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 2011, 29, 379-403.	3.2	56
171	Agent-based virtual organization architecture. Engineering Applications of Artificial Intelligence, 2011, 24, 895-910.	8.1	49
172	Incorporating temporal-bounded CBR techniques in real-time agents. Expert Systems With Applications, 2011, 38, 2783-2796.	7.6	15
173	A Goal-Oriented Execution Module Based on Agents. , 2011, , .		3
174	An Argumentation Framework for Supporting Agreements in Agent Societies Applied to Customer Support. Lecture Notes in Computer Science, 2011, , 396-403.	1.3	4
175	On a Computational Argumentation Framework for Agent Societies. Lecture Notes in Computer Science, 2011, , 123-140.	1.3	4
176	Supporting Dynamics Multiagent Systems on THOMAS. Advances in Intelligent and Soft Computing, 2011, , 167-174.	0.2	0
177	Temporal bounded reasoning for context-based information fusion in DoS attack detection. , 2010, , .		0
178	Integrating Information Extraction Agents into a Tourism Recommender System. Lecture Notes in Computer Science, 2010, , 193-200.	1.3	10
179	Applying Dialogue Games to Manage Recommendation in Social Networks. Lecture Notes in Computer Science, 2010, , 256-272.	1.3	8
180	An Agent-Supported Simulation of Labour and Financial Markets for Migration Processes. Lecture Notes in Economics and Mathematical Systems, 2010, , 241-252.	0.3	2

#	Article	IF	CITATIONS
181	An Open Architecture for Service-Oriented Virtual Organizations. Lecture Notes in Computer Science, 2010, , 118-132.	1.3	21
182	Trends on the Development of Adaptive Virtual Organizations. Advances in Intelligent and Soft Computing, 2010, , 113-121.	0.2	1
183	A Norm-Based Organization Management System. Lecture Notes in Computer Science, 2010, , 19-35.	1.3	15
184	Open MAS Architecture. Providing Real Time Solutions. Advances in Intelligent and Soft Computing, 2010, , 69-76.	0.2	0
185	Incorporating Temporal Constraints in the Planning Task of a Hybrid Intelligent IDS. Lecture Notes in Computer Science, 2010, , 101-110.	1.3	Ο
186	Model-Driven Development for Ubiquitous MAS. Advances in Intelligent and Soft Computing, 2010, , 87-95.	0.2	1
187	Temporal Bounded Planner Agent for Dynamic Industrial Environments. Lecture Notes in Computer Science, 2010, , 556-565.	1.3	Ο
188	Incorporating Temporal Constraints in the Analysis Task of a Hybrid Intelligent IDS. Advances in Intelligent and Soft Computing, 2010, , 61-69.	0.2	0
189	An Abstract Argumentation Framework for Supporting Agreements in Agent Societies. Lecture Notes in Computer Science, 2010, , 177-184.	1.3	2
190	Ensuring Time in Service Composition. , 2009, , .		4
191	A Framework to Guarantee Time-Bounded Composed Services. , 2009, , .		0
192	Multi-domain case-based module for customer support. Expert Systems With Applications, 2009, 36, 6866-6873.	7.6	22
193	Challenges for a CBR framework for argumentation in open MAS. Knowledge Engineering Review, 2009, 24, 327-352.	2.6	11
194	STRS: Social Network Based Recommender System for Tourism Enhanced with Trust. Advances in Soft Computing, 2009, , 71-79.	0.4	4
195	Does Android Dream with Intelligent Agents?. Advances in Soft Computing, 2009, , 194-204.	0.4	22
196	Towards the Implementation of a Normative Reasoning Process. Advances in Intelligent and Soft Computing, 2009, , 319-328.	0.2	3
197	Designing Virtual Organizations. Advances in Intelligent and Soft Computing, 2009, , 440-449.	0.2	17
198	Agent Design Using Model Driven Development. Advances in Intelligent and Soft Computing, 2009, , 60-69.	0.2	14

#	Article	IF	CITATIONS
199	Goal-Oriented Agent Testing Revisited. Lecture Notes in Computer Science, 2009, , 173-186.	1.3	16
200	MAS Modeling Based on Organizations. Lecture Notes in Computer Science, 2009, , 16-30.	1.3	22
201	An Organisation-Based Multiagent System for Medical Emergency Assistance. Lecture Notes in Computer Science, 2009, , 561-568.	1.3	2
202	On the Road to an Abstract Architecture for Open Virtual Organizations. Lecture Notes in Computer Science, 2009, , 642-650.	1.3	5
203	Organizational-Oriented Methodological Guidelines for Designing Virtual Organizations. Lecture Notes in Computer Science, 2009, , 154-162.	1.3	7
204	Using THOMAS for Service Oriented Open MAS. Lecture Notes in Computer Science, 2009, , 56-70.	1.3	3
205	MDD-based agent-oriented software engineering for ubiquitous deployment. , 2009, , .		3
206	A THOMAS based multi-agent system for recommendations and guidance in malls. Journal of Physical Agents, 2009, 3, 21-26.	0.3	2
207	Incorporating a Temporal Bounded Execution to the CBR Methodology. Lecture Notes in Computer Science, 2009, , 476-483.	1.3	0
208	Agent Negotiation Protocols in Time-Bounded Service Composition. Lecture Notes in Computer Science, 2009, , 527-534.	1.3	2
209	A Dialogue-Game Approach for Norm-Based MAS Coordination. Lecture Notes in Computer Science, 2009, , 468-475.	1.3	2
210	Guidelines to apply CBR in real-time multi-agent systems. Journal of Physical Agents, 2009, 3, 39-43.	0.3	9
211	An execution time planner for the ARTIS agent architecture. Engineering Applications of Artificial Intelligence, 2008, 21, 769-784.	8.1	26
212	Hybrid multi-agent architecture as a real-time problem-solving model. Expert Systems With Applications, 2008, 34, 2-17.	7.6	102
213	A FAST Method to Achieve Flexible Production Programming Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2008, 38, 242-252.	2.9	7
214	Arguing about Recommendations in Social Networks. , 2008, , .		2
215	Organizational Services For The Spade Agent Platform. IEEE Latin America Transactions, 2008, 6, 550-555.	1.6	4
216	A Dialogue Game Protocol for Recommendation in Social Networks. Lecture Notes in Computer Science, 2008, , 515-522.	1.3	4

#	Article	IF	CITATIONS
217	Temporal-Bounded CBR for the Management of Commitments in RT-Agents. Lecture Notes in Computer Science, 2008, , 95-102.	1.3	Ο
218	CBR Contributions to Argumentation in MAS. Advances in Intelligent and Soft Computing, 2007, , 304-311.	0.2	1
219	Supporting Agent Organizations. Lecture Notes in Computer Science, 2007, , 236-245.	1.3	21
220	Physical Agents. , 2007, , 117-143.		0
221	jTRASTO: A Development Toolkit for Real-Time Multi-Agent Systems. Lecture Notes in Computer Science, 2007, , 325-327.	1.3	1
222	Multi-Agent Systems over RT-Java for a Mobile Robot Control. Lecture Notes in Computer Science, 2006, , 1267-1274.	1.3	1
223	Multi-Agent System Development Based on Organizations. Electronic Notes in Theoretical Computer Science, 2006, 150, 55-71.	0.9	55
224	Adding New Communication Services to the FIPA Message Transport System. Lecture Notes in Computer Science, 2006, , 1-11.	1.3	3
225	CBR Model for the Intelligent Management of Customer Support Centers. Lecture Notes in Computer Science, 2006, , 663-670.	1.3	2
226	Developing real-time multi-agent systems. Integrated Computer-Aided Engineering, 2004, 11, 135-149.	4.6	57
227	Real-Time Extensions in Multi-agent Communication. Lecture Notes in Computer Science, 2004, , 468-477.	1.3	4
228	Deliberative Server for Real-Time Agents. , 2003, , 485-496.		2
229	Applying the ARTIS Agent Architecture to Mobile Robot Control. Lecture Notes in Computer Science, 2000, , 359-368.	1.3	7
230	Modelling Agents in Hard Real-Time Environments. Lecture Notes in Computer Science, 1999, , 63-76.	1.3	23
231	Commitment Management in Real-Time Multi-Agent Systems. Advances in Soft Computing, 0, , 503-511.	0.4	0