
Valeria Caprettini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3709160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Letters, 2017, 17, 3932-3939.	9.1	167
2	Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes. Advanced Materials, 2015, 27, 7145-7149.	21.0	93
3	Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nature Nanotechnology, 2018, 13, 965-971.	31.5	78
4	Cells Adhering to 3D Vertical Nanostructures: Cell Membrane Reshaping without Stable Internalization. Nano Letters, 2018, 18, 6100-6105.	9.1	73
5	Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Scientific Reports, 2017, 7, 8524.	3.3	59
6	On-Demand Intracellular Delivery of Single Particles in Single Cells by 3D Hollow Nanoelectrodes. Nano Letters, 2019, 19, 722-731.	9.1	59
7	Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays. Advanced Science, 2018, 5, 1800560.	11.2	47
8	Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces. ACS Applied Materials & Interfaces, 2018, 10, 29107-29114.	8.0	44
9	Selective intracellular delivery and intracellular recordings combined in MEA biosensors. Lab on A Chip, 2018, 18, 3492-3500.	6.0	34
10	Membrane Poration Mechanisms at the Cell–Nanostructure Interface. Advanced Biology, 2019, 3, e1900148.	3.0	28
11	Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters. Scientific Reports, 2018, 8, 12652.	3.3	23
12	Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein. International Journal of Nanomedicine, 2014, 9, 2727.	6.7	19
13	Modified three-dimensional nanoantennas for infrared hydrogen detection. Microelectronic Engineering, 2016, 162, 105-109.	2.4	9
14	Biomaterials-based approaches to model embryogenesis. Biomaterials Science, 2020, 8, 6992-7013.	5.4	6
15	A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129617.	2.4	6
16	SERS spectroscopy, electrical recording and intracellular injection in neuronal networks with 3D plasmonic nanoantennas. , 2016, , .		2
17	Nanoneedle devices for biomedicine. , 2022, , 181-206.		1
18	Coaxial-like three-dimensional nanoelectrodes for biological applications. Microelectronic Engineering, 2018, 187-188, 21-26.	2.4	0