List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. European Heart Journal, 2015, 36, 2585-2594.	2.2	789
2	Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 2003, 348, 403-413.	27.0	694
3	Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies. Journal of the American College of Cardiology, 2016, 68, 2440-2451.	2.8	340
4	Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. European Heart Journal, 2017, 38, 1895-1904.	2.2	258
5	ATtRACT—a database of RNA-binding proteins and associated motifs. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw035.	3.0	215
6	Genetic Variants Associated With Cancer Therapy–Induced Cardiomyopathy. Circulation, 2019, 140, 31-41.	1.6	195
7	Genetic Etiology for Alcohol-Induced Cardiac Toxicity. Journal of the American College of Cardiology, 2018, 71, 2293-2302.	2.8	182
8	The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. Journal of Clinical Investigation, 2002, 110, 1831-1838.	8.2	155
9	Association of Sleep Duration and Quality With Subclinical Atherosclerosis. Journal of the American College of Cardiology, 2019, 73, 134-144.	2.8	145
10	The hepatitis B virus X protein up-regulates tumor necrosis factor α gene expression in hepatocytes. Hepatology, 1998, 28, 1013-1021.	7.3	114
11	Genetically Confirmed Familial Hypercholesterolemia in Patients With Acute Coronary Syndrome. Journal of the American College of Cardiology, 2017, 70, 1732-1740.	2.8	111
12	Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2004, 444, 247-256.	2.8	106
13	Expression and Regulation of the Metalloproteinase ADAM-8 during Human Neutrophil Pathophysiological Activation and Its Catalytic Activity on L-Selectin Shedding. Journal of Immunology, 2007, 178, 8053-8063.	0.8	103
14	Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovascular Research, 2016, 109, 67-78.	3.8	103
15	Enhancing Repair of the Mammalian Heart. Circulation Research, 2007, 100, 1732-1740.	4.5	101
16	The Hepatitis B Virus X Protein Induces HIV-1 Replication and Transcription in Synergy with T-cell Activation Signals. Journal of Biological Chemistry, 2001, 276, 35435-35443.	3.4	95
17	The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology, 2008, 47, 1872-1883.	7.3	95
18	The hepatitis B virus X protein activates nuclear factor of activated T cells (NF-AT) by a cyclosporin A-sensitive pathway. EMBO Journal, 1998, 17, 7066-7077.	7.8	91

#	Article	IF	CITATIONS
19	The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. Journal of Clinical Investigation, 2002, 110, 1831-1838.	8.2	89
20	Activin A and Follistatin-Like 3 Determine the Susceptibility of Heart to Ischemic Injury. Circulation, 2009, 120, 1606-1615.	1.6	83
21	The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene, 2001, 20, 3323-3331.	5.9	82
22	Expression of Follistatin-Related Genes Is Altered in Heart Failure. Endocrinology, 2008, 149, 5822-5827.	2.8	82
23	The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: Possible role of HBx in invasion and metastasis. Hepatology, 2001, 33, 1270-1281.	7.3	78
24	The Alternative Heart: Impact of Alternative Splicing in Heart Disease. Journal of Cardiovascular Translational Research, 2013, 6, 945-955.	2.4	76
25	Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix. Journal of Hepatology, 2001, 34, 409-415.	3.7	71
26	Hepatitis B Virus Promotes Angiopoietin-2 Expression in Liver Tissue. American Journal of Pathology, 2006, 169, 1215-1222.	3.8	70
27	Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2009, 20, 582-592.	6.1	65
28	N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. Journal of Hepatology, 2004, 40, 632-637.	3.7	62
29	A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. Journal of Cell Biology, 2007, 179, 1205-1218.	5.2	62
30	The Vascular Stem Cell Niche. Journal of Cardiovascular Translational Research, 2012, 5, 618-630.	2.4	62
31	Severe Cardiac Dysfunction and Death Caused by Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Are Improved by Inhibition of Glycogen Synthase Kinase-3β. Circulation, 2019, 140, 1188-1204.	1.6	62
32	Revealing New Mouse Epicardial Cell Markers through Transcriptomics. PLoS ONE, 2010, 5, e11429.	2.5	61
33	Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. Journal of Heart and Lung Transplantation, 2016, 35, 625-635.	0.6	60
34	Short-Term Progression of Multiterritorial Subclinical Atherosclerosis. Journal of the American College of Cardiology, 2020, 75, 1617-1627.	2.8	55
35	Association of Genetic Variants With Outcomes in Patients With Nonischemic Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2021, 78, 1682-1699.	2.8	55
36	Calcineurin Splicing Variant Calcineurin A ^î ² 1 Improves Cardiac Function After Myocardial Infarction Without Inducing Hypertrophy. Circulation, 2011, 123, 2838-2847.	1.6	54

#	Article	IF	CITATIONS
37	Evidence of a Transcriptional Co-activator Function of Cohesin STAG/SA/Scc3. Journal of Biological Chemistry, 2004, 279, 6553-6559.	3.4	49
38	Expression of Extracellular Matrix Genes During Myocardial Recovery From Heart Failure After Left Ventricular Assist Device Support. Journal of Heart and Lung Transplantation, 2009, 28, 117-122.	0.6	49
39	Glycated Hemoglobin and SubclinicalÂAtherosclerosis in People Without Diabetes. Journal of the American College of Cardiology, 2021, 77, 2777-2791.	2.8	49
40	Activation of Serine One-Carbon Metabolism by Calcineurin Aβ1 Reduces Myocardial Hypertrophy and Improves Ventricular Function. Journal of the American College of Cardiology, 2018, 71, 654-667.	2.8	45
41	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	12.8	44
42	Machine Learning Improves Cardiovascular Risk Definition for Young,ÂAsymptomatic Individuals. Journal of the American College of Cardiology, 2020, 76, 1674-1685.	2.8	44
43	Genetics in dilated cardiomyopathy. Biomarkers in Medicine, 2013, 7, 517-533.	1.4	42
44	Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms. American Journal of Human Genetics, 2021, 108, 1083-1094.	6.2	42
45	Hepatitis B virus X protein transactivates inducible nitric oxide synthase gene promoter through the proximal nuclear factor [kappa]B[ndash]binding site: Evidence that cytoplasmic location of X protein is essential for gene transactivation. Hepatology, 2001, 34, 1218-1224.	7.3	41
46	Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction. Circulation Research, 2019, 125, 170-183.	4.5	41
47	The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Reviews in Medical Virology, 2011, 21, 315-329.	8.3	40
48	Understanding cardiovascular disease: a journey through the genome (and what we found there). DMM Disease Models and Mechanisms, 2012, 5, 434-443.	2.4	40
49	Cardiac Myocyte-specific Ablation of Follistatin-like 3 Attenuates Stress-induced Myocardial Hypertrophy. Journal of Biological Chemistry, 2011, 286, 9840-9848.	3.4	37
50	Follistatin-Like 3 Mediates Paracrine Fibroblast Activation by Cardiomyocytes. Journal of Cardiovascular Translational Research, 2012, 5, 814-826.	2.4	35
51	Prevalence of cardiac amyloidosis among elderly patients with systolic heart failure or conduction disorders. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 156-163.	3.0	33
52	Alternative Splicing of NOX4 in the Failing Human Heart. Frontiers in Physiology, 2017, 8, 935.	2.8	32
53	Complement C5 Protein as a Marker of Subclinical Atherosclerosis. Journal of the American College of Cardiology, 2020, 75, 1926-1941.	2.8	32
54	FineSplice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions. Nucleic Acids Research, 2014, 42, e71-e71.	14.5	30

#	Article	IF	CITATIONS
55	The Calcineurin Variant CnAÎ ² 1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chemical Biology, 2016, 23, 1372-1382.	5.2	30
56	Bloodless reperfusion with the oxygen carrier HBOC-201 in acute myocardial infarction: a novel platform for cardioprotective probes delivery. Basic Research in Cardiology, 2017, 112, 17.	5.9	30
57	Guidelines for Translational Research in Heart Failure. Journal of Cardiovascular Translational Research, 2015, 8, 3-22.	2.4	28
58	MouBeAT: A New and Open Toolbox for Guided Analysis of Behavioral Tests in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 201.	2.0	28
59	Clinical characteristics and determinants of the phenotype in TMEM43 arrhythmogenic right ventricular cardiomyopathy type 5. Heart Rhythm, 2020, 17, 945-954.	0.7	28
60	Induction of the calcineurin variant CnAβ1 after myocardial infarction reduces post-infarction ventricular remodelling by promoting infarct vascularization. Cardiovascular Research, 2014, 102, 396-406.	3.8	24
61	Neurogenesis: Regulation by Alternative Splicing and Related Posttranscriptional Processes. Neuroscientist, 2017, 23, 466-477.	3.5	22
62	The Hepatitis B Virus X Protein Binds to and Activates the NH2-Terminal trans-Activation Domain of Nuclear Factor of Activated T Cells-1. Virology, 2002, 299, 288-300.	2.4	21
63	Animal models of arrhythmogenic right ventricular cardiomyopathy: what have we learned and where do we go? Insight for therapeutics. Basic Research in Cardiology, 2017, 112, 50.	5.9	20
64	Lung ultrasound as a translational approach for non-invasive assessment of heart failure with reduced or preserved ejection fraction in mice. Cardiovascular Research, 2017, 113, 1113-1123.	3.8	19
65	Association Between Body Size Phenotypes and Subclinical Atherosclerosis. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3734-3744.	3.6	18
66	Analysis of Cardiac Myocyte Biology in Transgenic Mice: A Protocol for Preparation of Neonatal Mouse Cardiac Myocyte Cultures. Methods in Molecular Biology, 2010, 633, 113-124.	0.9	18
67	Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity. Virology, 2004, 328, 120-130.	2.4	15
68	A Gene Expression Profile of the Myocardial Response to Clenbuterol. Journal of Cardiovascular Translational Research, 2009, 2, 191-197.	2.4	13
69	<i>ZBTB17</i> (<i>MIZ1</i>) Is Important for the Cardiac Stress Response and a Novel Candidate Gene for Cardiomyopathy and Heart Failure. Circulation: Cardiovascular Genetics, 2015, 8, 643-652.	5.1	12
70	Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling. Npj Regenerative Medicine, 2016, 1, 16001.	5.2	12
71	The SRSF4–GAS5-Glucocorticoid Receptor Axis Regulates Ventricular Hypertrophy. Circulation Research, 2021, 129, 669-683	4.5	11
72	Usefulness of Genetic Testing in Hypertrophic Cardiomyopathy: an Analysis Using Real-World Data. Journal of Cardiovascular Translational Research, 2017, 10, 35-46.	2.4	10

#	Article	IF	CITATIONS
73	Higher order dynamic mode decomposition: From fluid dynamics to heart disease analysis. Computers in Biology and Medicine, 2022, 144, 105384.	7.0	10
74	H― <i>ras</i> deletion protects against angiotensin Il–induced arterial hypertension and cardiac remodeling through protein kinase Gâ€Iβ pathway activation. FASEB Journal, 2018, 32, 920-934.	0.5	9
75	Lafora Disease Is an Inherited Metabolic Cardiomyopathy. Journal of the American College of Cardiology, 2017, 69, 3007-3009.	2.8	6
76	Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease. Journal of Cardiovascular Translational Research, 2022, 15, 1239-1255.	2.4	6
77	Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition. New England Journal of Medicine, 2003, 348, 2037-2039.	27.0	5
78	Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine. Journal of Cardiovascular Translational Research, 2015, 8, 466-474.	2.4	4
79	Current State of Basic and Translational Cardiovascular Research in Spain. Circulation Research, 2017, 121, 1036-1039.	4.5	4
80	Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy Highlights of the Year in JCTR 2013. Journal of Cardiovascular Translational Research, 2014, 7, 518-525.	2.4	3
81	Early Preventive Treatment With Enalapril Improves Cardiac Function and Delays Mortality in Mice With Arrhythmogenic Right Ventricular Cardiomyopathy Type 5. Circulation: Heart Failure, 2021, 14, e007616.	3.9	3
82	Assessment of myocardial viscoelasticity with Brillouin spectroscopy in myocardial infarction and aortic stenosis models. Scientific Reports, 2021, 11, 21369.	3.3	3
83	Systolic Dysfunction in Infarcted Mice Does Not Necessarily Lead to Heart Failure: Need to Refine Preclinical Models. Journal of Cardiovascular Translational Research, 2017, 10, 499-501.	2.4	2
84	CnAβ1 shifts cardiac metabolism. Aging, 2019, 11, 839-840.	3.1	2
85	Best Paper of the Year 2021. Journal of Cardiovascular Translational Research, 2022, 15, 1-2.	2.4	2
86	dSreg: a Bayesian model to integrate changes in splicing and RNA-binding protein activity. Bioinformatics, 2020, 36, 2134-2141.	4.1	1
87	Understanding Cardiac Physiological Hypertrophy in a LncRNA Way. Journal of Cardiovascular Translational Research, 2022, 15, 3.	2.4	1
88	Workshop on cardiovascular extracellular matrix in health and disease in Baeza, Spain. Fibrogenesis and Tissue Repair, 2015, 8, 2.	3.4	0
89	Technologies to Study Genetics and Molecular Pathways. , 2016, , 251-269.		0
90	Genetic Enhancement of Cardiac Regeneration. , 2010, , 981-997.		0