
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708857/publications.pdf Version: 2024-02-01

SULANLUO

#	Article	IF	CITATIONS
1	Cross-language multimodal scene semantic guidance and leap sampling for video captioning. Visual Computer, 2023, 39, 9-25.	3.5	1
2	Wheezing caused by a patent ductus arteriosus (PDA) device occluder: Case report and review of the literature. Pediatric Pulmonology, 2022, , .	2.0	0
3	α-Conotoxin TxIB Improved Behavioral Abnormality and Changed Gene Expression in Zebrafish (Danio) Tj ETQq1 1	9.78431	4ggBT /Ov€
4	A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy. Marine Drugs, 2022, 20, 146.	4.6	2
5	Controlled Synthesis of Mesoporous <i>ï€</i> â€Conjugated Polymer Nanoarchitectures as Anodes for Lithiumâ€ion Batteries. Macromolecular Rapid Communications, 2022, 43, e2100897.	3.9	4
6	Inflammation Regulation via an Agonist and Antagonists of α7 Nicotinic Acetylcholine Receptors in RAW264.7 Macrophages. Marine Drugs, 2022, 20, 200.	4.6	6
7	Application of per-Residue Energy Decomposition to Design Peptide Inhibitors of PSD95 GK Domain. Frontiers in Molecular Biosciences, 2022, 9, 848353.	3.5	9
8	Polypyrrole Cubosomes with Ordered Ultralarge Mesopore for Controllable Encapsulation and Release of Albumin. Nano Letters, 2022, 22, 3685-3690.	9.1	8
9	Oligo-basic amino acids, potential nicotinic acetylcholine receptor inhibitors. Biomedicine and Pharmacotherapy, 2022, 152, 113215.	5.6	3
10	Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH ₃ sensing. Journal of Materials Chemistry A, 2021, 9, 8308-8316.	10.3	18
11	A yolk–shell Fe ₃ O ₄ @void@carbon nanochain as shuttle effect suppressive and volume-change accommodating sulfur host for long-life lithium–sulfur batteries. Nanoscale, 2021, 13, 7744-7750.	5.6	19
12	Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Marine Drugs, 2021, 19, 119.	4.6	3
13	Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2021, 64, 5620-5631.	6.4	7
14	Characterization of an α 4/7-Conotoxin LvIF from Conus lividus That Selectively Blocks α3β2 Nicotinic Acetylcholine Receptor. Marine Drugs, 2021, 19, 398.	4.6	4
15	Student Break Behavior Recognition Dataset. , 2021, , .		1
16	Synthesis and evaluation of disulfide-rich cyclic α-conotoxin [S9A]TxID analogues as novel α3β4 nAChR antagonists. Bioorganic Chemistry, 2021, 112, 104875.	4.1	2
17	Design, Synthesis, and Activity of an α-Conotoxin LtIA Fluorescent Analogue. ACS Chemical Neuroscience, 2021, 12, 3662-3671.	3.5	5
18	Riociguat therapy for pulmonary hypertension: a systematic review and meta-analysis. Annals of Palliative Medicine, 2021, 10, 11117-11128.	1.2	3

#	Article	lF	CITATIONS
19	α-Conotoxin TxIB Inhibits Development of Morphine-Induced Conditioned Place Preference in Mice via Blocking α6β2* Nicotinic Acetylcholine Receptors. Frontiers in Pharmacology, 2021, 12, 772990.	3.5	2
20	From Crystal Structures of RgIA4 in Complex with Ac-AChBP to Molecular Determinants of Its High Potency of α9α10 nAChR. Marine Drugs, 2021, 19, 709.	4.6	1
21	High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. Journal of Medicinal Chemistry, 2020, 63, 13656-13668.	6.4	18
22	Synthesis of sheet-like polypyrrole nanowires for the microextraction of trace residues of pyrethroid pesticides in human plasma and molecular dynamics-aided study of adsorption mechanism. Journal of Chromatography A, 2020, 1632, 461609.	3.7	7
23	Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Marine Drugs, 2020, 18, 464.	4.6	11
24	α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Marine Drugs, 2020, 18, 646.	4.6	4
25	Differential Expression of Nicotine Acetylcholine Receptors Associates with Human Breast Cancer and Mediates Antitumor Activity of αO-Conotoxin GeXIVA. Marine Drugs, 2020, 18, 61.	4.6	18
26	Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. Journal of Medicinal Chemistry, 2020, 63, 1564-1575.	6.4	13
27	αO-Conotoxin GeXIVA Inhibits the Growth of Breast Cancer Cells via Interaction with α9 Nicotine Acetylcholine Receptors. Marine Drugs, 2020, 18, 195.	4.6	20
28	Effects of Cyclization on Activity and Stability of α-Conotoxin TxIB. Marine Drugs, 2020, 18, 180.	4.6	14
29	Optimal fertigation for high yield and fruit quality of greenhouse strawberry. PLoS ONE, 2020, 15, e0224588.	2.5	10
30	Degradation kinetics of α onotoxin TxID. FEBS Open Bio, 2019, 9, 1561-1572.	2.3	3
31	Interaction of rat α9α10 nicotinic acetylcholine receptor with α-conotoxin RgIA and Vc1.1: Insights from docking, molecular dynamics and binding free energy contributions. Journal of Molecular Graphics and Modelling, 2019, 92, 55-64.	2.4	1
32	ldentification of Crucial Residues in α-Conotoxin El Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins, 2019, 11, 603.	3.4	7
33	Synthesis of Uniform Alkane-Filled Capsules with a High Under-Cooling Performance and Their Real-Time Optical Properties. Polymers, 2019, 11, 199.	4.5	0
34	α-Conotoxin TxIB: A Uniquely Selective Ligand for α6/α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Marine Drugs, 2019, 17, 490.	4.6	14
35	DSPE-PEG Modification of α-Conotoxin TxID. Marine Drugs, 2019, 17, 342.	4.6	8
36	The α9α10 Nicotinic Acetylcholine Receptor Antagonist αO-Conotoxin GeXIVA[1,2] Alleviates and Reverses Chemotherapy-Induced Neuropathic Pain. Marine Drugs, 2019, 17, 265.	4.6	39

#	Article	IF	CITATIONS
37	Cervical Cancer Correlates with the Differential Expression of Nicotinic Acetylcholine Receptors and Reveals Therapeutic Targets. Marine Drugs, 2019, 17, 256.	4.6	14
38	d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability. Marine Drugs, 2019, 17, 142.	4.6	20
39	Effects of serum, enzyme, thiol, and forced degradation on the stabilities of αOâ€Conotoxin GeXIVA[1,2] and GeXIVA [1,4]. Chemical Biology and Drug Design, 2018, 91, 1030-1041.	3.2	8
40	Expression in <i>Escherichia coli</i> of fusion protein comprising αâ€conotoxin Tx <scp>IB</scp> and preservation of selectivity to nicotinic acetylcholine receptors in the purified product. Chemical Biology and Drug Design, 2018, 91, 349-358.	3.2	13
41	Alanine-Scanning Mutagenesis of α-Conotoxin GI Reveals the Residues Crucial for Activity at the Muscle Acetylcholine Receptor. Marine Drugs, 2018, 16, 507.	4.6	19
42	Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist. Journal of Medicinal Chemistry, 2018, 61, 9256-9265.	6.4	19
43	Discovery Methodology of Novel Conotoxins from Conus Species. Marine Drugs, 2018, 16, 417.	4.6	27
44	Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology, 2018, 139, 226-237.	4.1	15
45	Effect of Methionine Oxidation and Substitution of α-Conotoxin TxID on α3β4 Nicotinic Acetylcholine Receptor. Marine Drugs, 2018, 16, 215.	4.6	7
46	αO-Conotoxin GeXIVA disulfide bond isomers exhibit differential sensitivity for various nicotinic acetylcholine receptors but retain potency and selectivity for the human α9α10 subtype. Neuropharmacology, 2017, 127, 243-252.	4.1	29
47	The crystal structure of Ac-AChBP in complex with $\hat{I}\pm$ -conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein and Cell, 2017, 8, 675-685.	11.0	25
48	α-Conotoxin [S9A]TxID Potently Discriminates between α3β4 and α6/α3β4 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2017, 60, 5826-5833.	6.4	30
49	Potassium tert-Butanolate promoted reaction of benzaldehydes and indoles: a new strategy for synthesis of bis(indolyl)arylmethanes. Chemical Research in Chinese Universities, 2017, 33, 200-205.	2.6	2
50	Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli. Marine Drugs, 2016, 14, 11.	4.6	23
51	From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Scientific Reports, 2016, 6, 22349.	3.3	41
52	Anti-hypersensitive effect of intramuscular administration of αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] in rats of neuropathic pain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 66, 112-119.	4.8	33
53	Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4026-35.	7.1	91
54	Key Residues in the Nicotinic Acetylcholine Receptor β2 Subunit Contribute to α-Conotoxin LvIA Binding. Journal of Biological Chemistry, 2015, 290, 9855-9862.	3.4	18

#	Article	IF	CITATIONS
55	Efficient Expression of Acetylcholine-Binding Protein from <i>Aplysia californica</i> in Bac-to-Bac System. BioMed Research International, 2014, 2014, 1-9.	1.9	6
56	Influence of Disulfide Connectivity on Structure and Bioactivity of α-Conotoxin TxIA. Molecules, 2014, 19, 966-979.	3.8	23
57	A novel α4/7â€conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB Journal, 2014, 28, 1842-1853.	0.5	64
58	Characterization of a Novel α-Conotoxin from Conus textile That Selectively Targets α6/α3β2β3 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 894-902.	3.4	53
59	Characterization of a Novel α-Conotoxin TxID from <i>Conus textile</i> That Potently Blocks Rat α3β4 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2013, 56, 9655-9663.	6.4	63
60	Optimal Cleavage and Oxidative Folding of α-Conotoxin TxIB as a Therapeutic Candidate Peptide. Marine Drugs, 2013, 11, 3537-3553.	4.6	19
61	A Novel Inhibitor of α9α10 Nicotinic Acetylcholine Receptors from Conus vexillum Delineates a New Conotoxin Superfamily. PLoS ONE, 2013, 8, e54648.	2.5	47
62	Synthesis of stable aqueous dispersion of graphene/polyaniline composite mediated by polystyrene sulfonic acid. Journal of Polymer Science Part A, 2012, 50, 4888-4894.	2.3	62
63	Atypical α-Conotoxin LtIA from Conus litteratus Targets a Novel Microsite of the α3β2 Nicotinic Receptor. Journal of Biological Chemistry, 2010, 285, 12355-12366.	3.4	49
64	Designed on the Low Cost System Framework of Road Condition Recognition Based on Roadside Multi-sensors. , 2009, , .		2
65	Diversity of the O-superfamily conotoxins fromConus miles. Journal of Peptide Science, 2007, 13, 44-53.	1.4	14
66	Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia (Poland), 2007, 62, 386-393.	1.5	53
67	Direct cDNA cloning of novel conotoxins of the T-superfamily from Conus textile. Peptides, 2006, 27, 2640-2646.	2.4	11
68	Sequence diversity of O-superfamily conopetides from Conus marmoreus native to Hainan. Peptides, 2006, 27, 3058-3068.	2.4	9
69	Novel α-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity. Journal of Peptide Science, 2006, 12, 693-704.	1.4	7
70	Identification and Molecular Diversity of T-superfamily Conotoxins from Conus lividus and Conus litteratus. Chemical Biology and Drug Design, 2006, 68, 97-106.	3.2	14
71	Novel O-superfamily Conotoxins Identified by cDNA Cloning From Three Vermivorous Conus Species. Chemical Biology and Drug Design, 2006, 68, 256-265.	3.2	26
72	Functional GNA expressed in Escherichia coli with high efficiency and its effect on Ceratovacuna lanigera Zehntner. Applied Microbiology and Biotechnology, 2005, 69, 184-191.	3.6	13