
Leor N Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708725/publications.pdf Version: 2024-02-01

Ι ΓΩΡ Ν ΚΑΤΖ

#	Article	IF	CITATIONS
1	What is attention?. Wiley Interdisciplinary Reviews: Cognitive Science, 2023, 14, e1570.	2.8	12
2	Microsaccades as a marker not a cause for attention-related modulation. ELife, 2022, 11, .	6.0	30
3	Midbrain activity shapes high-level visual properties in the primate temporal cortex. Neuron, 2021, 109, 690-699.e5.	8.1	32
4	A simple linear readout of MT supports motion direction-discrimination performance. Journal of Neurophysiology, 2020, 123, 682-694.	1.8	13
5	A Neural Pathway for Nonreinforced Preference Change. Trends in Cognitive Sciences, 2020, 24, 504-514.	7.8	19
6	Midbrain activity can explain perceptual decisions during an attention task. Nature Neuroscience, 2018, 21, 1651-1655.	14.8	35
7	Strategic and Dynamic Temporal Weighting for Perceptual Decisions in Humans and Macaques. ENeuro, 2018, 5, ENEURO.0169-18.2018.	1.9	24
8	Functional dissection of signal and noise in MT and LIP during decision-making. Nature Neuroscience, 2017, 20, 1285-1292.	14.8	93
9	The Role of the Lateral Intraparietal Area in (the Study of) Decision Making. Annual Review of Neuroscience, 2017, 40, 349-372.	10.7	60
10	Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature, 2016, 535, 285-288.	27.8	256
11	Decision-related perturbations of decision-irrelevant eye movements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1925-1930.	7.1	19
12	Cross-species comparison of anticipatory and stimulus-driven neck muscle activity well before saccadic gaze shifts in humans and nonhuman primates. Journal of Neurophysiology, 2015, 114, 902-913.	1.8	37
13	A Distinct Mechanism of Temporal Integration for Motion through Depth. Journal of Neuroscience, 2015, 35, 10212-10216.	3.6	21
14	Eye Movements, Visual Search and Scene Memory, in an Immersive Virtual Environment. PLoS ONE, 2014, 9, e94362.	2.5	48
15	Differential effects of deep TMS of the prefrontal cortex on apathy and depression. Brain Stimulation, 2011, 4, 266-274.	1.6	41
16	Deep transcranial magnetic stimulation over the prefrontal cortex: Evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimulation, 2009, 2, 188-200.	1.6	184