Marco Capogna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708667/publications.pdf

Version: 2024-02-01

62 papers 5,095 citations

38 h-index 63 g-index

76 all docs

76
docs citations

76 times ranked 5642 citing authors

#	Article	IF	CITATIONS
1	Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nature Neuroscience, 1999, 2, 44-49.	7.1	473
2	Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron, 1992, 9, 919-927.	3.8	354
3	Presynaptic inhibition in the hippocampus. Trends in Neurosciences, 1993, 16, 222-227.	4.2	321
4	Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area. Journal of Neuroscience, 2005, 25, 6775-6786.	1.7	233
5	lvy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 57, 917-929.	3.8	221
6	Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron, 2017, 94, 731-743.	3.8	201
7	The effects of GABAB agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain, 2001, 90, 217-226.	2.0	190
8	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
9	Acamprosate (calciumacetylhomotaurinate) decreases postsynaptic potentials in the rat neocortex: possible involvement of excitatory amino acid receptors. European Journal of Pharmacology, 1993, 231, 47-52.	1.7	156
10	Ca ²⁺ or Sr ²⁺ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin. Journal of Neuroscience, 1997, 17, 7190-7202.	1.7	146
11	Cell-Type-Specific Recruitment of Amygdala Interneurons to Hippocampal Theta Rhythm and Noxious Stimuli InÂVivo. Neuron, 2012, 74, 1059-1074.	3.8	145
12	Serotonin, Amygdala and Fear: Assembling the Puzzle. Frontiers in Neural Circuits, 2016, 10, 24.	1.4	131
13	GABAA, slow: causes and consequences. Trends in Neurosciences, 2011, 34, 101-112.	4.2	123
14	Different Fear States Engage Distinct Networks within the Intercalated Cell Clusters of the Amygdala. Journal of Neuroscience, 2011, 31, 5131-5144.	1.7	118
15	Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine. Journal of Neuroscience, 2011, 31, 15340-15351.	1.7	113
16	Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus. Journal of Neuroscience, 2010, 30, 1595-1609.	1.7	111
17	A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2431-2436.	3.3	109
18	Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. Neuroscientist, 2018, 24, 246-260.	2.6	105

#	Article	IF	Citations
19	Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia, 2011, 52, 121-131.	2.6	99
20	Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. Journal of Neuroscience, 2017, 37, 1785-1796.	1.7	99
21	GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells. Journal of Neuroscience, 2008, 28, 6974-6982.	1.7	85
22	Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells. Journal of Neuroscience, 2010, 30, 9898-9909.	1.7	82
23	Neurogliaform cells and other interneurons of stratum lacunosumâ€moleculare gate entorhinal–hippocampal dialogue. Journal of Physiology, 2011, 589, 1875-1883.	1.3	76
24	Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells. European Journal of Neuroscience, 2008, 27, 104-113.	1.2	71
25	GABAergic and Pyramidal Neurons of Deep Cortical Layers Directly Receive and Differently Integrate Callosal Input. Cerebral Cortex, 2007, 17, 1213-1226.	1.6	70
26	GABAergic cell type diversity in the basolateral amygdala. Current Opinion in Neurobiology, 2014, 26, 110-116.	2.0	70
27	Target-Cell Specificity of Kainate Autoreceptor and Ca ²⁺ -Store-Dependent Short-Term Plasticity at Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2008, 28, 13139-13149.	1.7	69
28	Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience, 2002, 110, 747-753.	1.1	68
29	Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity. Neuron, 2015, 87, 1290-1303.	3.8	64
30	Distinct properties of presynaptic group II and III metabotropic glutamate receptor-mediated inhibition of perforant pathway-CA1 EPSCs. European Journal of Neuroscience, 2004, 19, 2847-2858.	1.2	59
31	Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. European Journal of Neuroscience, 2004, 19, 2727-2740.	1.2	55
32	Functional connectivity of the main intercalated nucleus of the mouse amygdala. Journal of Physiology, 2011, 589, 1911-1925.	1.3	53
33	Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala. Journal of Physiology, 2007, 585, 117-134.	1.3	52
34	The α-Latrotoxin Mutant LTX ^{N4C} Enhances Spontaneous and Evoked Transmitter Release in CA3 Pyramidal Neurons. Journal of Neuroscience, 2003, 23, 4044-4053.	1.7	51
35	Neurogliaform cells of amygdala: a source of slow phasic inhibition in the basolateral complex. Journal of Physiology, 2012, 590, 5611-5627.	1.3	46
36	Large Intercalated Neurons of Amygdala Relay Noxious Sensory Information. Journal of Neuroscience, 2015, 35, 2044-2057.	1.7	44

#	Article	IF	Citations
37	Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala. Neuropsychopharmacology, 2015, 40, 3015-3026.	2.8	43
38	Â-Opioid Receptor-Mediated Inhibition of Intercalated Neurons and Effect on Synaptic Transmission to the Central Amygdala. Journal of Neuroscience, 2015, 35, 7317-7325.	1.7	43
39	Mutant α-Latrotoxin (LTXN4C) Does Not Form Pores and Causes Secretion by Receptor Stimulation. Journal of Biological Chemistry, 2003, 278, 31058-31066.	1.6	40
40	Group II Metabotropic Glutamate Receptors Mediate Presynaptic Inhibition of Excitatory Transmission in Pyramidal Neurons of the Human Cerebral Cortex. Frontiers in Cellular Neuroscience, 2018, 12, 508.	1.8	34
41	Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare. Neuropharmacology, 2005, 49, 45-56.	2.0	29
42	Shortâ€ŧerm synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. Journal of Physiology, 2002, 541, 545-559.	1.3	28
43	Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber â€" CA3 pathway. Molecular and Cellular Neurosciences, 2012, 50, 147-159.	1.0	26
44	Ripple-selective GABAergic projection cells in the hippocampus. Neuron, 2022, 110, 1959-1977.e9.	3.8	24
45	Somatic voltageâ€gated potassium currents of rat hippocampal pyramidal cells in organotypic slice cultures Journal of Physiology, 1996, 495, 367-381.	1.3	22
46	Firing of Hippocampal Neurogliaform Cells Induces Suppression of Synaptic Inhibition. Journal of Neuroscience, 2014, 34, 1280-1292.	1.7	20
47	Excitatory synaptic transmission and its modulation by PKC is unchanged in the hippocampus of GAP-43- deficient mice. European Journal of Neuroscience, 1999, 11, 433-440.	1.2	18
48	Presynaptic Facilitation of Synaptic Transmission in the Hippocampus., 1998, 77, 203-223.		17
49	Functional expression of the GABAA receptor $\hat{l}\pm 2$ and $\hat{l}\pm 3$ subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala. Frontiers in Neural Circuits, 2012, 6, 32.	1.4	16
50	Oscillatory Substrates of Fear and Safety. Neuron, 2014, 83, 753-755.	3.8	16
51	The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. European Journal of Neuroscience, 2021, 54, 6882-6901.	1.2	16
52	Unitary IPSPs enhance hilar mossy cell gain in the rat hippocampus. Journal of Physiology, 2007, 578, 451-470.	1.3	14
53	Sleep and Serotonin Modulate Paracapsular Nitric Oxide Synthase Expressing Neurons of the Amygdala. ENeuro, 2016, 3, ENEURO.0177-16.2016.	0.9	12
54	TRACE: An Unbiased Method to Permanently Tag Transiently Activated Inputs. Frontiers in Cellular Neuroscience, 2020, 14, 114.	1.8	6

#	Article	IF	CITATIONS
55	Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 668980.	1.8	6
56	Dendritic Inhibition in Layer 1 Cortex Gates Associative Memory. Neuron, 2018, 100, 516-519.	3.8	5
57	Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 58, 295.	3 . 8	2
58	Morphological characterization of large intercalated neurons provides novel insight on intrinsic networks of the amygdala. BMC Pharmacology, 2011, 11, .	0.4	1
59	Chemokines and HIVâ€1 virus: opposing players in Cajal–Retzius cell function. Journal of Physiology, 2012, 590, 2949-2950.	1.3	1
60	Which molecules regulate synaptic brain asymmetries?. Journal of Physiology, 2013, 591, 4687-4688.	1.3	1
61	Fear Memory Relapse: The Importance of Input Associativity. Trends in Neurosciences, 2021, 44, 337-339.	4.2	1
62	The role of main intercalated nucleus of the mouse amygdala. Frontiers in Cellular Neuroscience, 0, 4,	1.8	0