Sudarsan Tamang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	47.7	469
2	Chemistry of InP Nanocrystal Syntheses. Chemistry of Materials, 2016, 28, 2491-2506.	6.7	301
3	Aqueous Phase Transfer of InP/ZnS Nanocrystals Conserving Fluorescence and High Colloidal Stability. ACS Nano, 2011, 5, 9392-9402.	14.6	130
4	Halide–Amine Coâ€Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape. Angewandte Chemie - International Edition, 2016, 55, 3714-3718.	13.8	102
5	Cell-Permeable Ln(III) Chelate-Functionalized InP Quantum Dots As Multimodal Imaging Agents. ACS Nano, 2011, 5, 8193-8201.	14.6	87
6	Halide–Amine Coâ€Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape. Angewandte Chemie, 2016, 128, 3778-3782.	2.0	82
7	Tuning Size and Size Distribution of Colloidal InAs Nanocrystals via Continuous Supply of Prenucleation Clusters on Nanocrystal Seeds. Chemistry of Materials, 2016, 28, 8119-8122.	6.7	49
8	Long-term ambient air-stable cubic CsPbBr ₃ perovskite quantum dots using molecular bromine. Nanoscale Advances, 2019, 1, 3388-3391.	4.6	30
9	Optimizing the relaxivity of Gd(iii) complexes appended to InP/ZnS quantum dots by linker tuning. Dalton Transactions, 2013, 42, 8197.	3.3	26
10	Luminescence of Polyethylene Glycol Coated CdSeTe/ZnS and InP/ZnS Nanoparticles in the Presence of Copper Cations. ChemPhysChem, 2011, 12, 2247-2254.	2.1	24
11	Synthesis of colloidal InSb nanocrystals via in situ activation of InCl ₃ . Dalton Transactions, 2015, 44, 16923-16928.	3.3	22
12	Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion. Communications Chemistry, 2019, 2, .	4.5	20
13	HKUST-1 Metal Organic Framework as an Efficient Dual-Function Catalyst: Aziridination and One-Pot Ring-Opening Transformation for Formation of β-Aryl Sulfonamides with C–C, C–N, C–S, and C–O Bonds. Inorganic Chemistry, 2021, 60, 7794-7802.	4.0	19
14	Stable lead-halide perovskite quantum dots as efficient visible light photocatalysts for organic transformations. Nanoscale Advances, 2021, 3, 1464-1472.	4.6	17
15	Tunable NIR-II emitting silver chalcogenide quantum dots using thio/selenourea precursors: preparation of an MRI/NIR-II multimodal imaging agent. Dalton Transactions, 2020, 49, 15425-15432.	3.3	12
16	Isolation, Structure, and Functional Elucidation of a Modified Pentapeptide, Cysteine Protease Inhibitor (CPI-2081) from <i>Streptomyces Species</i> 2081 that Exhibit Inhibitory Effect on Cancer Cell Migration. Journal of Medicinal Chemistry, 2010, 53, 5121-5128.	6.4	11
17	A simple and general route for monofunctionalization of fluorescent and magnetic nanoparticles using peptides. Nanotechnology, 2011, 22, 175103.	2.6	10
18	Compact and highly stable quantum dots through optimized aqueous phase transfer. Proceedings of SPIE, 2011, , .	0.8	5

#	Article	IF	CITATIONS
19	DBU-Catalyzed One-Pot Synthesis of Nearly Any Metal Salt of Fatty Acid (M-FA): A Library of Metal Precursors to Semiconductor Nanocrystal Synthesis. ACS Omega, 2020, 5, 6666-6675.	3.5	3
20	Controlled Aggregation of Gold Nanoparticle Networks Induced by Alkali Metal Ions. Journal of Nanoscience and Nanotechnology, 2007, 7, 2683-2689.	0.9	2