Adnan Erol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708406/publications.pdf

Version: 2024-02-01

713332 759055 28 493 12 21 citations h-index g-index papers 32 32 32 889 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	An Integrated and Unifying Hypothesis for the Metabolic Basis of Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 13, 241-253.	1.2	85
2	Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. BioEssays, 2007, 29, 811-818.	1.2	60
3	Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair, apoptosis or senescence in response to damaging signals. Cellular Signalling, 2011, 23, 1076-1081.	1.7	49
4	The Functions of PPARs in Aging and Longevity. PPAR Research, 2007, 2007, 1-10.	1.1	40
5	Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis. Medical Hypotheses, 2005, 65, 525-529.	0.8	36
6	Unraveling the Molecular Mechanisms Behind the Metabolic Basis of Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 17, 267-276.	1.2	28
7	Role of oxidized LDL-induced "trained macrophages―in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14, 713-714.	1.8	23
8	Genotoxic stress-mediated cell cycle activities for the decision of cellular fate. Cell Cycle, 2011, 10, 3239-3248.	1.3	21
9	PPARα activators may be good candidates as antiaging agents. Medical Hypotheses, 2005, 65, 35-38.	0.8	18
10	Visceral adipose tissue specific persistence of Mycobacterium tuberculosis may be reason for the metabolic syndrome. Medical Hypotheses, 2008, 71, 222-228.	0.8	16
11	The role of fat tissue in the cholesterol lowering and the pleiotropic effects of statins $\hat{a}\in$ statins activate the generation of metabolically more capable adipocytes. Medical Hypotheses, 2005, 64, 69-73.	0.8	15
12	Are Paradoxical Cell Cycle Activities in Neurons and Glia Related to the Metabolic Theory of Alzheimer's Disease?. Journal of Alzheimer's Disease, 2010, 19, 129-135.	1.2	13
13	Are the emerging SARS-COV-2 mutations friend or foe?. Immunology Letters, 2021, 230, 63-64.	1.1	13
14	PPARα activators may play role for the regression of ventricular hypertrophy in hypertensive and hyperlipidemic patients. Medical Hypotheses, 2006, 66, 1044-1045.	0.8	8
15	Metabolic syndrome is a real disease and premalignant state induced by oncogenic stresses to block malignant transformation. Medical Hypotheses, 2010, 74, 1038-1043.	0.8	7
16	Pin1 as a Protector of Vascular Endothelial Homeostasis. Hypertension, 2012, 59, e14; author reply e15.	1.3	6
17	Type 2 diabetes and cancer as redox diseases?. Lancet, The, 2014, 384, 853-854.	6.3	5
18	Adipocyte insensitivity syndromes – novel approach to nutritional metabolic problems including obesity and obesity related disorders. Medical Hypotheses, 2005, 64, 826-832.	0.8	4

#	Article	IF	CITATIONS
19	Adipobiology-based pharmacology. Biomedical Reviews, 2014, 17, 73.	0.6	4
20	Comment on: Kumar et al. Fat Cellâ€"Specific Ablation of <i>Rictor</i> in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism. Diabetes 2010;59:1397â€"1406. Diabetes, 2011, 60, e14-e14.	0.3	3
21	Death-associated proliferation kinetic in normal and transformed cells. Cell Cycle, 2012, 11, 1512-1516.	1.3	3
22	IKK-mediated CYLD phosphorylation and cellular redox activity. Molecular Medicine, 2022, 28, 14.	1.9	2
23	Muscle-Specific PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>β</mml:mi><mml:mtext>/<td>mtext><n< td=""><td>ımlımi>δ</td></n<></td></mml:mtext></mml:mrow></mml:math>	mt ex t> <n< td=""><td>ımlımi>δ</td></n<>	ımlımi>δ
24	Neural Pathways and Neuropeptides Mediate the Therapeutic Actions of DPP IV Inhibitors in Type-2 Diabetes. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2007, 1, 132-135.	0.7	1
25	Importance of Efferocytosis in COVID-19 Mortality. Infection and Drug Resistance, 2022, Volume 15, 995-1007.	1.1	1
26	Mitochondrial dysfunction particularly in adipocytes may be an important triggering factor for type 2 diabetes. Medical Hypotheses, 2006, 67, 999-1000.	0.8	0
27	Sitagliptin phosphate: a DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Clinical Therapeutics, 2008, 30, 785-786.	1.1	0
28	High-dose versus low-dose losartan in patients with heart failure. Lancet, The, 2010, 375, 1079.	6.3	0