Ruchao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708236/publications.pdf

Version: 2024-02-01

477173 430754 1,315 29 18 29 citations h-index g-index papers 31 31 31 2421 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural and Biochemical Characterization of the nsp12-nsp7-nsp8 Core Polymerase Complex from SARS-CoV-2. Cell Reports, 2020, 31, 107774.	2.9	216
2	Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Science Translational Medicine, 2016, 8, 369ra179.	5.8	194
3	Cell entry by SARS-CoV-2. Trends in Biochemical Sciences, 2021, 46, 848-860.	3.7	118
4	Cryo-EM Structure of the African Swine Fever Virus. Cell Host and Microbe, 2019, 26, 836-843.e3.	5.1	113
5	Human Neonatal Fc Receptor Is the Cellular Uncoating Receptor for Enterovirus B. Cell, 2019, 177, 1553-1565.e16.	13.5	69
6	Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Research, 2017, 27, 853-864.	5.7	64
7	Structural insight into RNA synthesis by influenza D polymerase. Nature Microbiology, 2019, 4, 1750-1759.	5. 9	58
8	Structural insight into arenavirus replication machinery. Nature, 2020, 579, 615-619.	13.7	51
9	Structural Basis of SARS-CoV-2 Polymerase Inhibition by Favipiravir. Innovation(China), 2021, 2, 100080.	5. 2	51
10	Two classes of protective antibodies against Pseudorabies virus variant glycoprotein B: Implications for vaccine design. PLoS Pathogens, 2017, 13, e1006777.	2.1	34
11	Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide Reveals a Conserved Drug Target for Filovirus. Journal of Virology, 2017, 91, .	1.5	31
12	Structures of human-infecting <i>Thogotovirus</i> fusogens support a common ancestor with insect baculovirus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8905-E8912.	3.3	29
13	Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Reports, 2019, 29, 2217-2228.e5.	2.9	27
14	The Postfusion Structure of the Heartland Virus Gc Glycoprotein Supports Taxonomic Separation of the Bunyaviral Families Phenuiviridae and Hantaviridae. Journal of Virology, 2018, 92, .	1.5	24
15	Glycan Binding Specificity and Mechanism of Human and Porcine P[6]/P[19] Rotavirus VP8*s. Journal of Virology, 2018, 92, .	1.5	23
16	<i>Mycobacterium tuberculosis</i> protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Reports, 2021, 22, e52175.	2.0	23
17	Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands. Journal of Virology, 2018, 92, .	1.5	21
18	Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18928-18936.	3.3	21

#	Article	IF	CITATIONS
19	Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nature Microbiology, 2021, 6, 921-931.	5.9	20
20	Functional and Structural Characterization of P[19] Rotavirus VP8* Interaction with Histo-blood Group Antigens. Journal of Virology, 2016, 90, 9758-9765.	1.5	19
21	Molecular Basis of a Protective/Neutralizing Monoclonal Antibody Targeting Envelope Proteins of both Tick-Borne Encephalitis Virus and Louping Ill Virus. Journal of Virology, 2019, 93, .	1.5	19
22	Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18711-18718.	3.3	18
23	Molecular Basis of Binding between Middle East Respiratory Syndrome Coronavirus and CD26 from Seven Bat Species. Journal of Virology, 2020, 94, .	1.5	16
24	Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses. Cell Discovery, 2019, 5, 21.	3.1	15
25	Postfusion structure of human-infecting Bourbon virus envelope glycoprotein. Journal of Structural Biology, 2019, 208, 99-106.	1.3	10
26	Cryo-EM structure of the varicella-zoster virus A-capsid. Nature Communications, 2020, 11, 4795.	5.8	10
27	In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli. Protein and Cell, 2016, 7, 888-898.	4.8	9
28	Current knowledge of COVID-19: Advances, challenges and future perspectives. Biosafety and Health, 2021, 3, 202-209.	1.2	4
29	Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2