
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration host factor: A protein for all reasons. Cell, 1988, 55, 545-554.	13.5	523
2	Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nature Biotechnology, 2012, 30, 1232-1239.	9.4	365
3	Role for a Phage Promoter in Shiga Toxin 2 Expression from a Pathogenic Escherichia coli Strain. Journal of Bacteriology, 2001, 183, 2081-2085.	1.0	234
4	Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Molecular Microbiology, 1998, 28, 1255-1267.	1.2	227
5	Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Molecular Microbiology, 2002, 44, 957-970.	1.2	212
6	Phage regulatory circuits and virulence gene expression. Current Opinion in Microbiology, 2005, 8, 459-465.	2.3	201
7	Am E. coli gene product required for λ site-specific recombination. Cell, 1980, 20, 711-719.	13.5	188
8	Genetic characterization of a bacterial locus involved in the activity of the N function of phage λ. Virology, 1974, 58, 141-148.	1.1	150
9	Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 6506-6510.	3.3	146
10	Transcription antitermination: the \hat{I} » paradigm updated. Molecular Microbiology, 1995, 18, 191-200.	1.2	139
11	A Salvage Pathway for Protein Synthesis: tmRNA andTrans-Translation. Annual Review of Microbiology, 2003, 57, 101-123.	2.9	134
12	Evidence that a nucleotide sequence, "boxA,―is involved in the action of the NusA protein. Cell, 1983, 34, 143-149.	13.5	122
13	Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Molecular Microbiology, 2004, 51, 1691-1704.	1.2	118
14	Evidence that ribosomal protein S10 participates in control of transcription termination Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1115-1118.	3.3	117
15	Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO Journal, 2000, 19, 1098-1107.	3.5	117
16	The Operator and Early Promoter Region of the Shiga Toxin Type 2-Encoding Bacteriophage 933W and Control of Toxin Expression. Journal of Bacteriology, 2004, 186, 7670-7679.	1.0	116
17	Analysis of nutR: A region of phage lambda required for antitermination of transcription. Cell, 1982, 31, 61-70.	13.5	110
18	Gene N regulator function of phage λimm21: Evidence that a site of N action differs from a site of N recognition. Journal of Molecular Biology, 1973, 81, 505-516.	2.0	106

DAVID I FRIEDMAN

#	Article	IF	CITATIONS
19	Cooperative effects of bacterial mutations affecting λ N gene expression. Virology, 1976, 73, 119-127.	1.1	105
20	Effects of Rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. Journal of Molecular Biology, 1988, 204, 247-261.	2.0	91
21	RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C.Âelegans. Cell Reports, 2015, 11, 1123-1133.	2.9	91
22	Pathogenesis of Renal Disease Due to Enterohemorrhagic <i>Escherichia coli</i> in Germ-Free Mice. Infection and Immunity, 2008, 76, 3054-3063.	1.0	86
23	Bacteriophage lambda: alive and well and still doing its thing. Current Opinion in Microbiology, 2001, 4, 201-207.	2.3	84
24	L factor that is required for beta-galactosidase synthesis is the nusA gene product involved in transcription termination Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 1991-1994.	3.3	74
25	Functional importance of sequence in the stem-loop of a transcription terminator. Science, 1991, 254, 1205-1207.	6.0	71
26	Analysis of the Role of <i>trans</i> -Translation in the Requirement of tmRNA for λ <i>imm</i> ^{P22} Growth in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 2148-2157.	1.0	69
27	Interference with the expression of the N gene function of phage λ in a mutant of Escherichia coli. Virology, 1973, 51, 216-226.	1.1	68
28	Prophage Induction Is Enhanced and Required for Renal Disease and Lethality in an EHEC Mouse Model. PLoS Pathogens, 2013, 9, e1003236.	2.1	66
29	λ N antitermination system: Functional analysis of phage interactions with the host NusA protein. Journal of Molecular Biology, 1987, 194, 679-690.	2.0	64
30	Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal Genes and Development, 1990, 4, 2210-2222.	2.7	64
31	The nusA recognition site. Journal of Molecular Biology, 1984, 180, 1053-1063.	2.0	63
32	Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin1Published in conjunction with A Wisconsin Gathering Honoring Waclaw Szybalski on the occasion of his 75th year and 20 years of Editorship-in-Chief of Gene, 10–11 August 1997, University of Wisconsin, Madison, Wisconsin, USA.1. Gene, 1998, 223, 105-113.	1.0	62
33	The biological roles of trans-translation. Current Opinion in Microbiology, 2002, 5, 154-159.	2.3	58
34	Reduced Rho-dependent transcription termination permits NusA-independent growth of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7543-7547.	3.3	57
35	int-h: an int mutation of phage λ that enhances site-specific recombination. Cell, 1980, 20, 721-729.	13.5	55
36	Interaction between bacteriophage λ and its Escherichia coli host. Current Opinion in Genetics and Development, 1992, 2, 727-738.	1.5	53

#	Article	IF	CITATIONS
37	Bacteriophage Lambda N-Dependent Transcription Antitermination. Journal of Molecular Biology, 1994, 236, 217-228.	2.0	53
38	A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell, 1995, 83, 227-235.	13.5	53
39	<scp><scp>Nus</scp></scp> transcription elongation factors and <scp>RNase III</scp> modulate small ribosome subunit biogenesis in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 87, 382-393.	1.2	43
40	Regulation of Phage Gene Expression by Termination and Antitermination of Transcription. , 1988, , 263-319.		43
41	A point mutation in the Nul gene of bacteriophage λ facilitates phage growth in Escherichia coli with himA and gyrB mutations. Molecular Genetics and Genomics, 1988, 212, 149-156.	2.4	37
42	Isolation and mapping of Mu nu mutants which grow in him mutants of E. coli. Virology, 1982, 120, 269-272.	1.1	32
43	The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification During the time this manuscript was being prepared for publication, our colleague James V. Neel passed away. The other authors wish to dedicate this work to his memory. The GenBank accession number for the sequence reported in this paper is AF197335 Microbiology (United Kingdom),	0.7	32
44	Differential effect of phage regulator functions on transcription from various promoters: Evidence that the P22 gene 24 and the l» gene N products distinguish three classes of promoters. Journal of Molecular Biology, 1975, 98, 537-549.	2.0	31
45	Cooperative effects of bacterial mutations affecting λ N gene expression. Virology, 1976, 73, 128-138.	1.1	31
46	Prevention of the lethality of induced λ prophage by an isogenic λ plasmid. Virology, 1972, 50, 472-481.	1.1	29
47	Nomenclature of the genes encoding IHF. Molecular Microbiology, 1996, 19, 642-642.	1.2	26
48	Requirement for NusG for Transcription Antitermination In Vivo by the λ N Protein. Journal of Bacteriology, 2002, 184, 3416-3418.	1.0	26
49	The alpha subunit of RNA polymerase and transcription antitermination. Molecular Microbiology, 1996, 21, 839-851.	1.2	22
50	N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Molecular Microbiology, 2002, 38, 1074-1085.	1.2	22
51	Lysogeny, Prophage Induction, and Lysogenic Conversion. , 0, , 37-54.		21
52	Identification of Functional Regions of the Nun Transcription Termination Protein of Phage HK022 and the N Antitermination Protein of Phage λ using Hybridnun-NGenes. Journal of Molecular Biology, 1996, 257, 9-20.	2.0	20
53	Activation of a prophageâ€encoded tyrosine kinase by a heterologous infecting phage results in a selfâ€inflicted abortive infection. Molecular Microbiology, 2011, 82, 567-577.	1.2	20
54	Evidence that the KH RNA-binding Domains Influence the Action of the E.coli NusA Protein. Journal of Molecular Biology, 2002, 318, 1175-1188.	2.0	19

#	Article	IF	CITATIONS
55	Identification of the nusB gene product of Escherichia coli. Molecular Genetics and Genomics, 1981, 182, 498-501.	2.4	18
56	Growth of λ variants with added or altered promoters in N-limiting bacterial mutants: Evidence that an N recognition site lies in the PR promoter. Virology, 1976, 71, 61-73.	1.1	17
57	Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the λ N antitermination complex in vivo11Edited by M. Gottesman. Journal of Molecular Biology, 2001, 310, 33-49.	2.0	17
58	Characterization of a Eukaryotic-Like Tyrosine Protein Kinase Expressed by the Shiga Toxin-Encoding Bacteriophage 933W. Journal of Bacteriology, 2004, 186, 3472-3479.	1.0	15
59	Mutations reducing the activity of c17, a promoter of phage lambda formed by a tandem duplication Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 1122-1125.	3.3	13
60	A φ80 function inhibitory for growth of lambdoid phage in him mutants of Escherichia coli deficient in integration host factor I. Genetic Analysis of the Rha phenotype. Virology, 1985, 140, 313-327.	1.1	13
61	λimmλ·434: A phage with a hybrid immunity region. Virology, 1973, 56, 46-53.	1.1	12
62	A single-base-pair mutation changes the specificities of both a transcription activation protein and its binding site Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9562-9565.	3.3	12
63	A 50 s ribosomal determinant: Immunological studies correlating function and structure. Journal of Molecular Biology, 1968, 32, 579-586.	2.0	10
64	Structural studies of the ribosomes of Rhodopseudomonas spheroides. Journal of Molecular Biology, 1966, 22, 53-66.	2.0	8
65	Lambdoid Phages and Shiga Toxin. , 0, , 129-164.		8
66	The operator-early promoter regions of Shiga-toxin bearing phage H-19B. Molecular Microbiology, 2001, 41, 585-599.	1.2	7
67	Genetic analysis of the N transcription antitermination system of phage λ. Genome, 1989, 31, 491-496.	0.9	6
68	A φ80 function inhibitory for growth of lambdoid phage in him mutants of Escherichia coli. Deficient in integration host factor II. Physiological analysis of the abortive infection. Virology, 1985, 140, 328-341.	1.1	5
69	Evidence that the Promoter Can Influence Assembly of Antitermination Complexes at Downstream RNA Sites. Journal of Bacteriology, 2006, 188, 2222-2232.	1.0	5
70	Bacteriophage Evolution and the Role of Phages in Host Evolution. , 0, , 55-65.		5
71	Identification and Isolation of Lysogens with Induced Prophage. Methods in Molecular Biology, 2009, 501, 253-265.	0.4	3
72	Contribution of Phages to Group A Streptococcus Genetic Diversity and Pathogenesis. , 0, , 319-P4.		3

5

#	Article	IF	CITATIONS
73	Analyzing Transcription Antitermination in Lambdoid Phages Encoding Toxin Genes. Methods in Enzymology, 2003, 371, 418-438.	0.4	2
74	Phage Biology. , 0, , 18-36.		2
75	Immunological identification of a ribosomal protein on a sub-ribosomal particle. Journal of Molecular Biology, 1969, 41, 305-308.	2.0	1
76	Bacteriophages Encoding Botulinum and Diphtheria Toxins. , 0, , 280-296.		1
77	Virulence-Linked Bacteriophages of Pathogenic Vibrios. , 0, , 187-205.		1