Dario Brunetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3707901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective. Pharmaceutics, 2022, 14, 1287.	4.5	22
2	Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Molecular Psychiatry, 2021, 26, 5733-5750.	7.9	79
3	Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications, 2021, 12, 1929.	12.8	55
4	Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines, 2021, 9, 833.	3.2	17
5	Mitochondria in Neurogenesis: Implications for Mitochondrial Diseases. Stem Cells, 2021, 39, 1289-1297.	3.2	27
6	Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All―and "Precision Medicine― Strategies. Pharmaceutics, 2020, 12, 1083.	4.5	44
7	Targeting Multiple Mitochondrial Processes by a Metabolic Modulator Prevents Sarcopenia and Cognitive Decline in SAMP8 Mice. Frontiers in Pharmacology, 2020, 11, 1171.	3.5	31
8	A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes. Nutrients, 2020, 12, 282.	4.1	27
9	Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells, 2020, 9, 909.	4.1	58
10	Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism. Pharmacological Research, 2020, 158, 104863.	7.1	27
11	SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2131-2142.	3.8	24
12	Mitochondrial <i>PITRM1</i> peptidase loss-of-function in childhood cerebellar atrophy. Journal of Medical Genetics, 2018, 55, 599-606.	3.2	26
13	Defective <scp>PITRM</scp> 1 mitochondrial peptidase is associated with AÎ ² amyloidotic neurodegeneration. EMBO Molecular Medicine, 2016, 8, 176-190.	6.9	60
14	Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain, 2014, 137, 57-68.	7.6	78
15	Differentiation potential and GFP labeling of sheep bone marrowâ€derived mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 134-143.	2.6	15
16	Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Human Molecular Genetics, 2012, 21, 5294-5305.	2.9	87
17	C19orf12 and FA2H Mutations Are Rare in Italian Patients With Neurodegeneration With Brain Iron Accumulation. Seminars in Pediatric Neurology, 2012, 19, 75-81.	2.0	38
18	Genetic engineering including superseding microinjection: new ways to make GM pigs. Xenotransplantation, 2010, 17, 397-410.	2.8	29

DARIO BRUNETTI

#	Article	IF	CITATIONS
19	Development, embryonic genome activity and mitochondrial characteristics of bovine–pig inter-family nuclear transfer embryos. Reproduction, 2010, 140, 273-285.	2.6	29
20	Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species. Theriogenology, 2010, 73, 748-757.	2.1	50
21	Transgene Expression of Green Fluorescent Protein and Germ Line Transmission in Cloned Pigs Derived from <i>In Vitro</i> Transfected Adult Fibroblasts. Cloning and Stem Cells, 2008, 10, 409-420.	2.6	58
22	Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology, 2007, 67, 90-98.	2.1	76
23	Direct Derivation of Neural Rosettes from Cloned Bovine Blastocysts: A Model of Early Neurulation Events and Neural Crest Specification In Vitro. Stem Cells, 2006, 24, 2514-2521.	3.2	46