Rossella Dorati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370779/publications.pdf

Version: 2024-02-01

86 papers 2,537 citations

293460 24 h-index 263392 45 g-index

88 all docs

88 docs citations

88 times ranked 3673 citing authors

#	Article	IF	CITATIONS
1	Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink. Journal of Pharmacy and Pharmacology, 2022, 74, 57-66.	1.2	1
2	Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. International Journal of Molecular Sciences, 2022, 23, 1290.	1.8	27
3	Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach. Pharmaceutics, 2022, 14, 252.	2.0	3
4	CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals, 2022, 15, 103.	1.7	20
5	A Design of Experiment (DOE) approach to correlate PLA-PCL electrospun fibers diameter and mechanical properties for soft tissue regeneration purposes. Journal of Drug Delivery Science and Technology, 2022, 68, 103060.	1.4	8
6	Shape memory engineered scaffold (SMES) for potential repair of neural tube defects. Reactive and Functional Polymers, 2022, 173, 105223.	2.0	3
7	Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration. Scientific Reports, 2021, 11, 2629.	1.6	15
8	Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study. International Journal of Pharmaceutics, 2021, 596, 120198.	2.6	4
9	Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms. International Journal of Pharmaceutics, 2021, 599, 120447.	2.6	9
10	A study focused on macrophages modulation induced by the Polymeric Electrospun Matrices (EL-Ms) for application in tissue regeneration: In vitro proof of concept. International Journal of Pharmaceutics, 2021, 603, 120712.	2.6	9
11	Tubular Electrospun Vancomycin-Loaded Vascular Grafts: Formulation Study and Physicochemical Characterization. Polymers, 2021, 13, 2073.	2.0	10
12	Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. International Journal of Molecular Sciences, 2021, 22, 8064.	1.8	31
13	Nanotechnology, a booster for the multitarget drug verteporfin. Journal of Drug Delivery Science and Technology, 2021, 64, 102562.	1.4	2
14	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	2.0	20
15	Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics, 2021, 13, 1565.	2.0	12
16	Optimization of FDM 3D printing process parameters to produce haemodialysis curcumin-loaded vascular grafts. Drug Delivery and Translational Research, 2021, , 1.	3.0	1
17	Tobramycin Supplemented Small-Diameter Vascular Grafts for Local Antibiotic Delivery: A Preliminary Formulation Study. International Journal of Molecular Sciences, 2021, 22, 13557.	1.8	5
18	The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue Regeneration Purposes. Journal of Drug Delivery Science and Technology, 2020, 58, 101781.	1.4	26

#	Article	IF	CITATIONS
19	Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 2020, 12, 735.	2.0	569
20	High Efficiency Vibrational Technology (HEVT) for Cell Encapsulation in Polymeric Microcapsules. Pharmaceutics, 2020, 12, 469.	2.0	6
21	On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation. Pharmaceutics, 2020, 12, 260.	2.0	19
22	Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering. International Journal of Molecular Sciences, 2020, 21, 1764.	1.8	18
23	Preliminary investigation on a new natural based poly(gammaâ€glutamic acid)/Chitosan bioink. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2718-2732.	1.6	23
24	Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers, 2020, 12, 1390.	2.0	20
25	Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. Journal of Applied Polymer Science, 2020, 137, 49223.	1.3	16
26	Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses. Inflammation, 2019, 42, 45-53.	1.7	19
27	Microfluidic encapsulation method to produce stable liposomes containing iohexol. Journal of Drug Delivery Science and Technology, 2019, 54, 101340.	1.4	13
28	Release Profile of Gentamicin Sulfate from Polylactide-co-Polycaprolactone Electrospun Nanofiber Matrices. Pharmaceutics, 2019, 11, 161.	2.0	38
29	Poly(gamma-glutamic acid) based thermosetting hydrogels for injection: Rheology and functional parameters evaluation. Reactive and Functional Polymers, 2019, 140, 93-102.	2.0	16
30	Staggered Herringbone Microfluid Device for the Manufacturing of Chitosan/TPP Nanoparticles: Systematic Optimization and Preliminary Biological Evaluation. International Journal of Molecular Sciences, 2019, 20, 6212.	1.8	21
31	The safety of tattoo inks: Possible options for a common regulatory framework. Science of the Total Environment, 2019, 651, 634-637.	3.9	9
32	Design of copolymer PLA-PCL electrospun matrix for biomedical applications. Reactive and Functional Polymers, 2018, 124, 77-89.	2.0	65
33	Ivermectin controlled release implants based on poly-D, l -lactide and poly-Îμ-caprolactone. Journal of Drug Delivery Science and Technology, 2018, 46, 101-110.	1.4	12
34	Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. International Journal of Pharmaceutics, 2018, 536, 165-177.	2.6	69
35	The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics, 2018, 10, 267.	2.0	73
36	Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targetingâ€"In Vitro Evaluation. International Journal of Molecular Sciences, 2018, 19, 2304.	1.8	17

3

#	Article	IF	Citations
37	Development of a Topical 48-H Release Formulation as an Anti-scarring Treatment for Deep Partial-Thickness Burns. AAPS PharmSciTech, 2018, 19, 2264-2275.	1.5	12
38	Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates. Nanomaterials, 2018, 8, 37.	1.9	40
39	Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Carbohydrate Polymers, 2018, 199, 150-160.	5.1	42
40	Emerging and re-emerging infectious disease in otorhinolaryngology. Acta Otorhinolaryngologica Italica, 2018, 38, S1-S106.	0.7	6
41	GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics, 2018, 10, 2.	2.0	69
42	Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. International Journal of Molecular Sciences, 2018, 19, 2310.	1.8	58
43	Design of a Bioabsorbable Multilayered Patch for Esophagus Tissue Engineering. Macromolecular Bioscience, 2017, 17, 1600426.	2.1	14
44	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	2.0	16
45	Gentamicin-Loaded Thermosetting Hydrogel and Moldable Composite Scaffold: Formulation Study and Biologic Evaluation. Journal of Pharmaceutical Sciences, 2017, 106, 1596-1607.	1.6	33
46	Polyethylene Glycol-Poly-Lactide-co-Glycolide Block Copolymer-Based Nanoparticles as a Potential Tool for Off-Label Use of N-Acetylcysteine in the Treatment of Diastrophic Dysplasia. Journal of Pharmaceutical Sciences, 2017, 106, 3631-3641.	1.6	11
47	Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals, 2017, 10, 96.	1.7	120
48	Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. International Journal of Pharmaceutics, 2016, 511, 1112-1123.	2.6	31
49	CNA-loaded PLGA nanoparticles improve humoral response againstS. aureus-mediated infections in a mouse model: subcutaneous vs. nasal administration strategy. Journal of Microencapsulation, 2016, 33, 750-762.	1.2	6
50	Formulation and inÂvitro characterization of a composite biodegradable scaffold as antibiotic delivery system and regenerative device for bone. Journal of Drug Delivery Science and Technology, 2016, 35, 124-133.	1.4	14
51	Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. Journal of Microencapsulation, 2016, 33, 137-145.	1.2	21
52	An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Materials Science and Engineering C, 2016, 58, 909-917.	3.8	29
53	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	1.4	23
54	Smart Biodegradable Nanoparticulate Materials: Poly-lactide-co-glycolide Functionalization with Selected Peptides. Current Nanoscience, 2016, 12, 347-356.	0.7	7

#	Article	IF	Citations
55	InÂvitro characterization of an injectable in situ forming composite system for bone reconstruction. Polymer Degradation and Stability, 2015, 119, 151-158.	2.7	12
56	Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech, 2015, 16, 1129-1139.	1.5	11
57	Enhanced Degradation of Lactide-co-Glycolide Polymer with Basic Nucleophilic Drugs. Advances in Pharmaceutics, 2015, 2015, 1-10.	0.5	14
58	Effect of Hydration on Physicochemical Properties of End-Capped PLGA. Advances in Biomaterials, 2014, 2014, 1-9.	0.2	15
59	Amphiphilic inulin-d-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications. Carbohydrate Polymers, 2014, 103, 46-54.	5.1	52
60	A Short Term Quality Control Tool for Biodegradable Microspheres. AAPS PharmSciTech, 2014, 15, 530-541.	1.5	18
61	Preparation and Characterization of an Advanced Medical Device for Bone Regeneration. AAPS PharmSciTech, 2014, 15, 75-82.	1.5	7
62	Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Materials Science and Engineering C, 2014, 34, 130-139.	3.8	23
63	Adhesive microbeads for the targeting delivery of anticaries agents of vegetable origin. Food Chemistry, 2013, 138, 898-904.	4.2	15
64	Sub-unit vaccine against S. aureus-mediated infections: Set-up of nano-sized polymeric adjuvant. International Journal of Pharmaceutics, 2013, 452, 390-401.	2.6	19
65	Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. Journal of Microencapsulation, 2013, 30, 559-570.	1.2	17
66	Design of 3 <scp>D</scp> Hybrid Composite Scaffolds: Effect of Composition on Scaffold Structure and Cell Proliferation. Macromolecular Symposia, 2013, 334, 106-116.	0.4	3
67	Nanostructured Polymeric Functional Micelles for Drug Delivery Applications. Macromolecular Symposia, 2013, 334, 17-23.	0.4	14
68	Long-Term Effect of Gamma Irradiation on the Functional Properties and Cytocompatibility of Multiblock Co-Polymer Films. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2223-2240.	1.9	11
69	Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy. European Journal of Histochemistry, 2012, 56, 20.	0.6	40
70	Polymer Scaffolds for Bone Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 259-285.	0.7	3
71	A preliminary study on the morphological and release properties of hydroxyapatite–alendronate composite materials. Journal of Microencapsulation, 2011, 28, 395-405.	1.2	14
72	Induction of an <i>in vitro</i> reversible hypometabolism through chitosan-based nanoparticles. Journal of Microencapsulation, 2011, 28, 229-239.	1.2	11

#	Article	IF	CITATION
73	Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polymer Degradation and Stability, 2010, 95, 694-701.	2.7	57
74	Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical Applications. Bioinorganic Chemistry and Applications, 2010, 2010, 1-12.	1.8	29
75	Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technology and Health Care, 2009, 16, 401-413.	0.5	17
76	Site-directed PEGylation as successful approach to improve the enzyme replacement in the case of prolidase. International Journal of Pharmaceutics, 2008, 358, 230-237.	2.6	22
77	\hat{I}^3 -Irradiation of PEGd,IPLA and PEG-PLGA Multiblock Copolymers: I. Effect of Irradiation Doses. AAPS PharmSciTech, 2008, 9, 718-25.	1.5	43
78	\hat{I}^3 -irradiation of PEGd,lPLA and PEG-PLGA Multiblock Copolymers: II. Effect of Oxygen and EPR Investigation. AAPS PharmSciTech, 2008, 9, 1110-1118.	1.5	23
79	Ex vivo evaluation of prolidase loaded chitosan nanoparticles for the enzyme replacement therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 58-65.	2.0	38
80	Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: Preparation, characterization and delivery of a model protein. Journal of Microencapsulation, 2008, 25, 330-338.	1.2	16
81	Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technology and Health Care, 2008, 16, 401-13.	0.5	12
82	Chitosan glutamate nanoparticles for protein delivery: Development and effect on prolidase stability. Journal of Microencapsulation, 2007, 24, 553-564.	1.2	44
83	Investigation of the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) copolymer. Polymer Degradation and Stability, 2007, 92, 1660-1668.	2.7	44
84	Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech, 2007, 8, E177-E185.	1.5	45
85	Surface characterization by atomic force microscopy of sterilized PLGA microspheres. Journal of Microencapsulation, 2006, 23, 123-133.	1.2	12
86	The effect of Î ³ -irradiation on PLGA/PEG microspheres containing ovalbumin. Journal of Controlled Release, 2005, 107, 78-90.	4.8	46