
Minji Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706958/publications.pdf Version: 2024-02-01

MINII DADK

#	Article	IF	CITATIONS
1	Genome of Malassezia arunalokei and Its Distribution on Facial Skin. Microbiology Spectrum, 2022, 10, .	3.0	7
2	Ulmusakidian, a new coumarin glycoside and antifungal phenolic compounds from the root bark of Ulmus davidiana var. japonica. Bioorganic and Medicinal Chemistry Letters, 2021, 36, 127828.	2.2	6
3	Skin Commensal Fungus <i>Malassezia</i> and Its Lipases. Journal of Microbiology and Biotechnology, 2021, 31, 637-644.	2.1	25
4	Revised structural assignment of azalomycins based on genomic and chemical analysis. Organic Chemistry Frontiers, 2021, 8, 4791-4798.	4.5	10
5	A Novel Virus Alters Gene Expression and Vacuolar Morphology in <i>Malassezia</i> Cells and Induces a TLR3-Mediated Inflammatory Immune Response. MBio, 2020, 11, .	4.1	23
6	Polyhalogenation of Isoflavonoids by the Termite-Associated <i>Actinomadura</i> sp. RB99. Journal of Natural Products, 2020, 83, 3102-3110.	3.0	10
7	Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Frontiers in Cellular and Infection Microbiology, 2020, 10, 191.	3.9	18
8	Antifungal Phenols from <i>Woodfordia uniflora</i> Collected in Oman. Journal of Natural Products, 2020, 83, 2261-2268.	3.0	35
9	pH-Dependent Expression, Stability, and Activity of <i>Malassezia restricta</i> MrLip5 Lipase. Annals of Dermatology, 2020, 32, 473.	0.9	5
10	Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus <i>Malassezia restricta</i> . Mycobiology, 2019, 47, 242-249.	1.7	9
11	Beauvetetraones A–C, phomaligadione-derived polyketide dimers from the entomopathogenic fungus, Beauveria bassiana. Organic Chemistry Frontiers, 2019, 6, 162-166.	4.5	9
12	Resequencing the Genome of Malassezia restricta Strain KCTC 27527. Microbiology Resource Announcements, 2019, 8, .	0.6	8
13	Evaluation of drug susceptibility test for Efinaconazole compared with conventional antifungal agents. Mycoses, 2019, 62, 291-297.	4.0	8
14	Understanding the Mechanism of Action of the Anti-Dandruff Agent Zinc Pyrithione against Malassezia restricta. Scientific Reports, 2018, 8, 12086.	3.3	42
15	Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis. Journal of Microbiology and Biotechnology, 2018, 28, 1937-1945.	2.1	29
16	Whole genome sequencing analysis of the cutaneous pathogenic yeast <i>Malassezia restricta</i> and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses, 2017, 60, 188-197.	4.0	56
17	<i>In Vitro</i> Anti- <i>Malassezia</i> Activity of <i>Castanea crenata</i> Shell and Oil-Soluble <i>Glycyrrhiza</i> Extracts. Annals of Dermatology, 2017, 29, 321.	0.9	6
18	Efficacy and Safety of Cream Containing Climbazole/Piroctone Olamine for Facial Seborrheic Dermatitis: A Single-Center, Open-Label Split-Face Clinical Study. Annals of Dermatology, 2016, 28, 733.	0.9	16

Minji Park

#	Article	IF	CITATIONS
19	The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans. Biochemical and Biophysical Research Communications, 2016, 477, 706-711.	2.1	10
20	Characterisation and Expression Analysis of MrLip1, a Class 3 Family Lipase of <i>Malassezia restricta</i> . Mycoses, 2015, 58, 671-678.	4.0	14
21	Mitochondrial Protein Nfu1 Influences Homeostasis of Essential Metals in the Human Fungal Pathogen <i>Cryptococcus neoformans</i> . Mycobiology, 2014, 42, 427-431.	1.7	4
22	Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi. Mycobiology, 2013, 41, 67-72.	1.7	81