
Harm HogenEsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. Journal of Fungi (Basel, Switzerland), 2022, 8, 610.	1.5	4
2	Local and Systemic Changes in Lipid Profile as Potential Biomarkers for Canine Atopic Dermatitis. Metabolites, 2021, 11, 670.	1.3	5
3	Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. Journal of Immunology, 2021, 206, 700-711.	0.4	16
4	Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. Journal of Fungi (Basel, Switzerland), 2021, 7, 1030.	1.5	8
5	Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS ONE, 2020, 15, e0235295.	1.1	12
6	Lipidomic Profiling of the Epidermis in a Mouse Model of Dermatitis Reveals Sexual Dimorphism and Changes in Lipid Composition before the Onset of Clinical Disease. Metabolites, 2020, 10, 299.	1.3	9
7	Development of IgIC and GroEL recombinant vaccines for francisellosis in Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 2020, 105, 341-349.	1.6	9
8	Self-reinforcing nanoscalar polycaprolactone-polyethylene terephthalate electrospun fiber blends. Polymer, 2020, 202, 122573.	1.8	3
9	Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Frontiers in Immunology, 2020, 11, 596964.	2.2	11
10	A Nanoparticle-Poly(I:C) Combination Adjuvant Enhances the Breadth of the Immune Response to Inactivated Influenza Virus Vaccine in Pigs. Vaccines, 2020, 8, 229.	2.1	27
11	Genetic Variation in the Magnitude and Longevity of the IgC Subclass Response to a Diphtheria-Tetanus-Acellular Pertussis (DTaP) Vaccine in Mice. Vaccines, 2019, 7, 124.	2.1	9
12	Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine, 2019, 37, 1945-1953.	1.7	16
13	Corn-derived alpha-D-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 226-235.	1.7	22
14	Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. Npj Vaccines, 2018, 3, 51.	2.9	252
15	Training mouse pathologists: 16th annual workshop on the pathology of mouse models of human disease. Lab Animal, 2018, 47, 38-40.	0.2	2
16	Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs. Frontiers in Immunology, 2018, 9, 934.	2.2	116
17	Profiling of epidermal lipids in a mouse model of dermatitis: Identification of potential biomarkers. PLoS ONE, 2018, 13, e0196595.	1.1	26
18	Preclinical safety study of a recombinant <i>Streptococcus pyogenes</i> vaccine formulated with aluminum adjuvant. Journal of Applied Toxicology, 2017, 37, 222-230.	1.4	14

#	Article	IF	CITATIONS
19	Loss of FAS/FASL signalling does not reduce apoptosis in <i>Sharpin</i> null mice. Experimental Dermatology, 2017, 26, 820-822.	1.4	3
20	Training mouse pathologists: 15 years of workshops on the pathology of mouse models of human disease. Lab Animal, 2017, 46, 204-206.	0.2	3
21	Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γÎT cells, NK cells, and dendritic cells. Immunologic Research, 2017, 65, 1139-1149.	1.3	9
22	Alpha-D-glucan nanoparticulate adjuvant induces a transient inflammatory response at the injection site and targets antigen to migratory dendritic cells. Npj Vaccines, 2017, 2, 4.	2.9	39
23	Selection of a suitable reference gene for quantitative gene expression in mouse lymph nodes after vaccination. BMC Research Notes, 2017, 10, 689.	0.6	9
24	Genome-Wide Association Mapping of the Antibody Response to Diphtheria-Tetanus-acellular Pertussis Vaccine in Mice. Journal of Infectious Diseases, 2016, 215, jiw587.	1.9	6
25	Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Experimental and Molecular Pathology, 2016, 101, 303-307.	0.9	10
26	Dermal lymphatic dilation in a mouse model of alopecia areata. Experimental and Molecular Pathology, 2016, 100, 332-336.	0.9	5
27	Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell–Mediated Ureteritis and Hydronephrosis. Journal of Immunology, 2016, 196, 2388-2400.	0.4	135
28	Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants. Journal of Controlled Release, 2015, 204, 51-59.	4.8	82
29	The pathogenesis of chronic eosinophilic esophagitis in SHARPIN-deficient mice. Experimental and Molecular Pathology, 2015, 99, 460-467.	0.9	12
30	The Epigenetic Regulator CXXC Finger Protein 1 is Essential for Murine Hematopoiesis. PLoS ONE, 2014, 9, e113745.	1.1	31
31	Notch-Dependent Repression of miR-155 in the Bone Marrow Niche Regulates Hematopoiesis in an NF-κB-Dependent Manner. Cell Stem Cell, 2014, 15, 51-65.	5.2	161
32	Development of a recombinant fusion protein vaccine formulation to protect against Streptococcus pyogenes. Vaccine, 2014, 32, 3810-3815.	1.7	18
33	Chronic Proliferative Dermatitis in Sharpin Null Mice: Development of an Autoinflammatory Disease in the Absence of B and T Lymphocytes and IL4/IL13 Signaling. PLoS ONE, 2014, 9, e85666.	1.1	51
34	Control of antigen-binding to aluminum adjuvants and the immune response with a novel phosphonate linker. Vaccine, 2013, 31, 4362-4367.	1.7	23
35	Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant. Vaccine, 2013, 31, 3979-3986.	1.7	79
36	Loss of Function of the Mouse Sharpin Gene Results in Peyer's Patch Regression. PLoS ONE, 2013, 8, e55224.	1.1	14

#	Article	IF	CITATIONS
37	Increased Expression of Cxcr3 and Its Ligands, Cxcl9 and Cxcl10, during the Development of Alopecia Areata in the Mouse. Journal of Investigative Dermatology, 2012, 132, 1736-1738.	0.3	41
38	Training Mouse Pathologists: Ten Years of Workshops on the Pathology of Mouse Models of Human Disease. Toxicologic Pathology, 2012, 40, 823-825.	0.9	4
39	A NUP98-HOXD13 leukemic fusion gene leads to impaired class switch recombination and antibody production. Experimental Hematology, 2012, 40, 622-633.	0.2	5
40	SHARPIN is a key regulator of immune and inflammatory responses. Journal of Cellular and Molecular Medicine, 2012, 16, 2271-2279.	1.6	55
41	Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. Journal of Controlled Release, 2012, 164, 183-186.	4.8	60
42	SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells. PLoS ONE, 2012, 7, e31809.	1.1	35
43	Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants. Frontiers in Immunology, 2012, 3, 406.	2.2	280
44	Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response. Journal of Immune Based Therapies and Vaccines, 2011, 9, 5.	2.4	18
45	Effect of the strength of adsorption of HIV 1 SF162dV2gp140 to aluminum ontaining adjuvants on the immune response. Journal of Pharmaceutical Sciences, 2011, 100, 3245-3250.	1.6	28
46	Effect of Ageing on the Immune Response of Dogs to Vaccines. Journal of Comparative Pathology, 2010, 142, S74-S77.	0.1	16
47	Antiâ€IL5 decreases the number of eosinophils but not the severity of dermatitis in Sharpinâ€deficient mice. Experimental Dermatology, 2010, 19, 252-258.	1.4	28
48	Vascular Lesions in Pigs Experimentally Infected With Porcine Circovirus Type 2 Serogroup B. Veterinary Pathology, 2010, 47, 140-147.	0.8	19
49	Retinoic Acid Determines the Precise Tissue Tropism of Inflammatory Th17 Cells in the Intestine. Journal of Immunology, 2010, 184, 5519-5526.	0.4	91
50	Adverse Vaccinal Events in Dogs and Cats. Veterinary Clinics of North America - Small Animal Practice, 2010, 40, 393-407.	0.5	46
51	Preformulation studies—The next advance in aluminum adjuvant-containing vaccines. Vaccine, 2010, 28, 4868-4870.	1.7	38
52	Evaluation of innate immunity and vector toxicity following inoculation of bovine, porcine or human adenoviral vectors in a mouse model. Virus Research, 2010, 153, 134-142.	1.1	22
53	Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine, 2010, 28, 3588-3594.	1.7	80
54	Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology, 2009, 386, 44-54.	1.1	42

#	Article	IF	CITATIONS
55	Effect of the strength of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant on the immune response. Vaccine, 2009, 27, 888-892.	1.7	87
56	Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood, 2009, 114, 4064-4076.	0.6	120
57	STAT4 Isoforms Differentially Regulate Th1 Cytokine Production and the Severity of Inflammatory Bowel Disease. Journal of Immunology, 2008, 181, 5062-5070.	0.4	31
58	Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood, 2008, 112, 320-329.	0.6	29
59	Vascular-associated lymphoid tissue in swine (Sus scrofa). Comparative Medicine, 2008, 58, 168-73.	0.4	10
60	Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine, 2007, 25, 825-833.	1.7	120
61	Activation of dendritic cells and induction of CD4+ T cell differentiation by aluminum-containing adjuvants. Vaccine, 2007, 25, 4575-4585.	1.7	162
62	Imject® Alum is not aluminum hydroxide adjuvant or aluminum phosphate adjuvant. Vaccine, 2007, 25, 4985-4986.	1.7	33
63	Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine, 2007, 25, 6618-6624.	1.7	113
64	Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Review of Vaccines, 2007, 6, 685-698.	2.0	233
65	Identification of a Chemokine Network That Recruits FoxP3+ Regulatory T Cells Into Chronically Inflamed Intestine. Gastroenterology, 2007, 132, 966-981.	0.6	59
66	Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes and Immunity, 2007, 8, 416-421.	2.2	198
67	Cul4A Is Required for Cell Viability and Its Deficiency in Hematopoietic Cells Causes Apoptosis and Is Fatal Blood, 2007, 110, 639-639.	0.6	0
68	Lack of Association between Repeated Vaccination and Thyroiditis in Laboratory Beagles. Journal of Veterinary Internal Medicine, 2006, 20, 818-821.	0.6	11
69	Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid. Vaccine, 2006, 24, 1665-1669.	1.7	25
70	Cytokine Expression in Normal and Inflamed Esophageal Mucosa: A Study into the Pathogenesis of Allergic Eosinophilic Esophagitis. Journal of Pediatric Gastroenterology and Nutrition, 2006, 42, 22-26.	0.9	152
71	Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Experimental Dermatology, 2006, 15, 808-814.	1.4	29
72	17. Biodistribution, Innate Immune Response and Toxicity Following Intravenous Inoculation of Mice with Nonhuman Adenoviral Vectors. Molecular Therapy, 2006, 13, S7.	3.7	0

#	Article	IF	CITATIONS
73	Lack of Association between Repeated Vaccination and Thyroiditis in Laboratory Beagles. Journal of Veterinary Internal Medicine, 2006, 20, 818.	0.6	5
74	Increased expression of chemokines in the skin of chronic proliferative dermatitis mutant mice. Experimental Dermatology, 2005, 14, 906-913.	1.4	8
75	Genes upregulated in a metastasizing human colon carcinoma cell line. International Journal of Cancer, 2005, 113, 699-705.	2.3	7
76	Porcine circovirus type 2 (PCV2) causes apoptosis in experimentally inoculated BALB/c mice. BMC Veterinary Research, 2005, 1, 7.	0.7	57
77	Induction of Antigen-Specific Th1-Type Immune Responses by Gamma-Irradiated Recombinant Brucella abortus RB51. Vaccine Journal, 2005, 12, 1429-1436.	3.2	26
78	Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine, 2005, 23, 1588-1595.	1.7	250
79	Effect of phosphorylation of ovalbumin on adsorption by aluminum-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine, 2005, 23, 1502-1506.	1.7	55
80	Prevalence, Risk Factors, and Genetic Diversity of Bartonella henselae Infections in Pet Cats in Four Regions of the United States. Journal of Clinical Microbiology, 2004, 42, 652-659.	1.8	94
81	Effect of age on immune parameters and the immune response of dogs to vaccines: a cross-sectional study. Veterinary Immunology and Immunopathology, 2004, 97, 77-85.	0.5	59
82	Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine, 2004, 22, 1475-1479.	1.7	70
83	Distribution of adsorbed antigen in mono-valent and combination vaccines. Vaccine, 2004, 22, 1973-1984.	1.7	33
84	Chemokines in Allergic Inflammation: Human Disease and Animal Models. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2004, 3, 351-361.	0.4	2
85	Developing a comprehensive mouse pathology program. Comparative Medicine, 2004, 54, 617-21.	0.4	7
86	Comparison of antibody functionality using different immobilization methods. Biotechnology and Bioengineering, 2003, 84, 215-223.	1.7	115
87	Relationship between the degree of antigen adsorption to aluminum hydroxide adjuvant in interstitial fluid and antibody production. Vaccine, 2003, 21, 1219-1223.	1.7	90
88	Effect of the Degree of Phosphate Substitution in Aluminum Hydroxide Adjuvant on the Adsorption of Phosphorylated Proteins. Pharmaceutical Development and Technology, 2003, 8, 81-86.	1.1	74
89	Evaluation of antithyroglobulin antibodies after routine vaccination in pet and research dogs. Journal of the American Veterinary Medical Association, 2002, 221, 515-521.	0.2	39
90	Effect of vaccination on serum concentrations of total and antigen-specific immunoglobulin E in dogs. American Journal of Veterinary Research, 2002, 63, 611-616.	0.3	23

#	Article	IF	CITATIONS
91	Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine, 2002, 20, S34-S39.	1.7	278
92	Immunization of rabbits against a bacterial pathogen with an alginate microparticle vaccine. Journal of Controlled Release, 2002, 85, 227-235.	4.8	26
93	Effects of cellulose derivatives and poly(ethylene oxide)–poly(propylene oxide) tri-block copolymers (Pluronic®surfactants) on the properties of alginate based microspheres and their interactions with phagocytic cells. Journal of Controlled Release, 2002, 85, 181-189.	4.8	19
94	Sebaceous Adenocarcinoma of the External Auditory Canal in a New Zealand White Rabbit. Journal of Comparative Pathology, 2002, 127, 301-303.	0.1	14
95	Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Therapy, 2002, 9, 1722-1729.	2.3	106
96	Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine, 2001, 19, 1747-1752.	1.7	68
97	Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine, 2001, 19, 2884-2889.	1.7	70
98	Change in the degree of adsorption of proteins by aluminum-containing adjuvants following exposure to interstitial fluid: freshly prepared and aged model vaccines. Vaccine, 2001, 20, 80-85.	1.7	58
99	Induction of systemic and mucosal immune response in cattle by intranasal administration of pig serum albumin in alginate microparticles. Veterinary Immunology and Immunopathology, 2001, 83, 93-105.	0.5	51
100	Increased expression of type 2 cytokines in chronic proliferative dermatitis (cpdm) mutant mice and resolution of inflammation following treatment with IL-12. European Journal of Immunology, 2001, 31, 734-742.	1.6	42
101	Mice lacking the transcription factor RelB develop T cell-dependent skin lesions similar to human atopic dermatitis. European Journal of Immunology, 2000, 30, 2323-2332.	1.6	96
102	Therapeutic interventions in mice with chronic proliferative dermatitis (cpdm/cpdm). Experimental Dermatology, 2000, 9, 351-358.	1.4	26
103	Extracellular Bartonella henselae and artifactual intraerythrocytic pseudoinclusions in experimentally infected cats. Veterinary Microbiology, 2000, 76, 283-290.	0.8	18
104	The chronic proliferative dermatitis mouse mutation (cpdm): mapping of the mutant gene locus. Journal of Experimental Animal Science, 2000, 41, 101-108.	0.5	5
105	Circumvention of Vector-Specific Neutralizing Antibody Response by Alternating Use of Human and Non-Human Adenoviruses: Implications in Gene Therapy. Virology, 2000, 272, 159-167.	1.1	98
106	B-cell function in canine X-linked severe combined immunodeficiency. Veterinary Immunology and Immunopathology, 2000, 75, 121-134.	0.5	16
107	Lymphocyte populations and adhesion molecule expression in bovine tonsils. Veterinary Immunology and Immunopathology, 2000, 73, 15-29.	0.5	23
108	Immunization with DNA, adenovirus or both in biodegradable alginate microspheres: effect of route of inoculation on immune response. Vaccine, 2000, 19, 253-263.	1.7	69

#	Article	IF	CITATIONS
109	Changes in Keratin and Filaggrin Expression in the Skin of Chronic Proliferative Dermatitis <i>(cpdm)</i> Mutant Mice. Pathobiology, 1999, 67, 45-50.	1.9	28
110	Urocanic Acid Photochemistry and Photobiology. Photochemistry and Photobiology, 1999, 69, 115-135.	1.3	83
111	Vaccine-Induced Autoimmunity in the Dog. Advances in Veterinary Medicine, 1999, 41, 733-747.	0.6	67
112	Immune response of neonatal specific pathogen-free cats to experimental infection with Bartonella henselae. Veterinary Immunology and Immunopathology, 1999, 71, 233-243.	0.5	33
113	Induction of pulmonary immunity in cattle by oral administration of ovalbumin in alginate microspheres. Immunology Letters, 1998, 60, 37-43.	1.1	36
114	Systematic method for determining intravenous drug treatment strategies aiding the humoral immune response. IEEE Transactions on Biomedical Engineering, 1998, 45, 429-439.	2.5	7
115	The Humoral Immune Response toHaemophilus influenzaeType b: a Mathematical Model Based on T-zone and Germinal Center B-cell Dynamics. Journal of Theoretical Biology, 1998, 194, 341-381.	0.8	30
116	Evidence of reproductive failure and lack of perinatal transmission of Bartonella henselae in experimentally infected cats. Veterinary Immunology and Immunopathology, 1998, 65, 177-189.	0.5	77
117	Experimental Infection of Young Specific Pathogenâ€Free Cats withBartonella henselae. Journal of Infectious Diseases, 1997, 176, 206-216.	1.9	147
118	Systemic and pulmonary immune response to intrabronchial administration of ovalbumin in calves. Veterinary Immunology and Immunopathology, 1996, 51, 293-302.	0.5	14
119	Oral vaccination with alginate microsphere systems. Journal of Controlled Release, 1996, 39, 209-220.	4.8	81
120	Tenfold Increased Incidence of Spontaneous Multiple Myeloma in Long-Term Immunosuppressed Aging C57BL/KaLwRij Mice. Clinical Immunology and Immunopathology, 1996, 79, 155-162.	2.1	9
121	Interleukin-6 activity in dogs with juvenile polyarteritis syndrome: effect of corticosteroids. Clinical Immunology and Immunopathology, 1995, 77, 107-110.	2.1	11
122	Chronic Proliferative Dermatitis in Mice: Neutrophil-Endothelium Interactions and the Role of Adhesion Molecules. Pathobiology, 1995, 63, 341-347.	1.9	12
123	Pathologic Features of Naturally Occurring Juvenile Polyarteritis in Beagle Dogs. Veterinary Pathology, 1995, 32, 337-345.	0.8	76
124	Maintenance of Donor Phenotype After Full-Thickness Skin Transplantation from Mice with Chronic Proliferative Dermatitis (cpdm/dpdm) to C57BL/Ka and Nude Mice and Vice Versa. Journal of Investigative Dermatology, 1995, 105, 769-773.	0.3	26
125	Ultrastructure of Epidermis of Mice with Chronic Proliferative Dermatitis. Ultrastructural Pathology, 1995, 19, 107-111.	0.4	24
126	Gastrointestinal AAPOAII and systemic AA-amyloidosis in aged C57BL/Ka mice. Vigiliae Christianae, 1993, 64, 37-43.	0.1	13

#	Article	IF	CITATIONS
127	Constitutive expression of LY-6.A2 on murine keratinocytes and inducible expression on TCRγδ+ dendritic epidermal T cells. Journal of Dermatological Science, 1993, 5, 114-121.	1.0	4
128	Glycosylphosphatidyl inositol-linked membrane protein expression by intestinal intraepithelial lymphocytes. International Immunology, 1992, 4, 899-903.	1.8	4
129	Neurohypophyseal Astrocytoma (Pituicytoma) in a Rhesus Monkey (Macaca mulatto). Veterinary Pathology, 1992, 29, 359-361.	0.8	17
130	Immunologic abnormalities in canine juvenile polyarteritis syndrome: A naturally occurring animal model of Kawasaki disease. Clinical Immunology and Immunopathology, 1992, 65, 110-118.	2.1	44
131	Isolation and phenotypic and functional characterization of cells from Peyer's patches in the dog. Veterinary Immunology and Immunopathology, 1992, 31, 1-10.	0.5	16
132	Immunohistology of Peyer's patches in the dog. Veterinary Immunology and Immunopathology, 1992, 30, 147-160.	0.5	31
133	Ultrastructure and alkaline phosphatase activity of the dome epithelium of canine Peyer's patches. Veterinary Immunology and Immunopathology, 1990, 24, 177-186.	0.5	18
134	Development and functional characterization of T cell lines from canine Peyer's patches. Veterinary Immunology and Immunopathology, 1989, 23, 29-39.	0.5	7
135	Aluminum-Containing Adjuvants: Properties, Formulation, and Use. , 0, , 81-114.		14