Dong Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706922/publications.pdf

Version: 2024-02-01

331670 289244 1,907 39 21 40 citations h-index g-index papers 41 41 41 2006 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts. Journal of Energy Chemistry, 2022, 72, 465-478.	12.9	17
2	Optimization of Ni-Based Catalysts for Dry Reforming of Methane via Alloy Design: A Review. Energy & Energy & Review. Energy & En	5.1	29
3	Insights into the influence of functional groups on the properties of graphene from firstâ€principles calculations. Journal of Physical Organic Chemistry, 2022, 35, .	1.9	2
4	Electrochemical reduction of acetonitrile to ethylamine. Nature Communications, 2021, 12, 1949.	12.8	47
5	Enhanced resistance to carbon deposition in chemical-looping combustion of methane: Synergistic effect of different oxygen carriers via sequence filling. Chemical Engineering Journal, 2021, 421, 129776.	12.7	20
6	Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chemical Society Reviews, 2021, 50, 12338-12376.	38.1	103
7	Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities. Applied Surface Science, 2020, 507, 145145.	6.1	19
8	Theoretical investigation the growth of Fe3Si on GaAs: Stability and electronic properties of Fe3Si/GaAs(0 0 1), (1 1 0) via DFT. Applied Surface Science, 2020, 506, 144691 .	6.1	6
9	Exploring electrocatalytic stability and activity of unmodified and platinum-modified tungsten and niobium nitrides. International Journal of Hydrogen Energy, 2020, 45, 22883-22892.	7.1	17
10	Interfacial Active Sites for CO2 Assisted Selective Cleavage of C–C/C–H Bonds in Ethane. CheM, 2020, 6, 2703-2716.	11.7	57
11	Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2. Chemical Engineering Journal, 2020, 388, 124190.	12.7	39
12	Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni ₅ P ₄ Catalyst Incorporating Singleâ€Atomic Ru Sites. Advanced Materials, 2020, 32, e1906972.	21.0	281
13	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H 2 Syngas Production from Electrochemical CO 2 Reduction. Angewandte Chemie, 2020, 132, 11441-11444.	2.0	11
14	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H ₂ Syngas Production from Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11345-11348.	13.8	100
15	Hydrostatic pressures effect on structure stability, electronic, optical and elastic properties of rutile VO ₂ doped TiO ₂ by density functional theory investigation. Materials Research Express, 2019, 6, 0965c2.	1.6	1
16	Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 556, 324-334.	9.4	20
17	Enhanced CH ₄ and CO Oxidation over Ce _{1–<i>x</i>} Fe <i>_x</i> O _{2â~î´} Hybrid Catalysts by Tuning the Lattice Distortion and the State of Surface Iron Species. ACS Applied Materials & Distortion and the State of Surface Iron Species. ACS Applied Materials & Distortion A	8.0	64
18	Effect of Fe doping concentration on photocatalytic performance of CeO2 from DFT insight into analysis. AIP Advances, 2019, 9, .	1.3	10

#	Article	IF	CITATIONS
19	The mechanism of photocatalyst and the effects of co-doping CeO2 on refractive index and reflectivity from DFT calculation. Computational Materials Science, 2019, 158, 197-208.	3.0	21
20	DFT insights into oxygen vacancy formation and CH ₄ activation over CeO ₂ surfaces modified by transition metals (Fe, Co and Ni). Physical Chemistry Chemical Physics, 2018, 20, 11912-11929.	2.8	64
21	Ce1-xFexO2-δ catalysts for catalytic methane combustion: Role of oxygen vacancy and structural dependence. Catalysis Today, 2018, 318, 73-85.	4.4	55
22	Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences. Applied Energy, 2018, 230, 696-711.	10.1	22
23	First-principles study the behavior of oxygen vacancy on the surface of ZrO 2 and Zr 0.97 M 0.03 O 2. Computational Condensed Matter, 2017, 11, 1-10.	2.1	13
24	Effect of transition metal Fe adsorption on CeO 2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study. Applied Surface Science, 2017, 416, 547-564.	6.1	41
25	Modification of KNO ₃ on the reducibility and reactivity of Fe ₂ O ₃ â€based oxygen carriers for chemicalâ€looping combustion of methane. Canadian Journal of Chemical Engineering, 2017, 95, 1569-1578.	1.7	15
26	Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers. Chemical Engineering Journal, 2017, 328, 382-396.	12.7	30
27	Water splitting for hydrogen generation over lanthanum-calcium-iron perovskite-type membrane driven by reducing atmosphere. International Journal of Hydrogen Energy, 2017, 42, 19776-19787.	7.1	10
28	Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Applied Catalysis B: Environmental, 2017, 202, 51-63.	20.2	306
29	Structure dependence and reaction mechanism of CO oxidation: A model study on macroporous CeO2 and CeO2-ZrO2 catalysts. Journal of Catalysis, 2016, 344, 365-377.	6.2	148
30	Performance of cubic ZrO2 doped CeO2: First-principles investigation on elastic, electronic and optical properties of Ce1â ⁻ Zr O2. Journal of Alloys and Compounds, 2016, 671, 208-219.	5.5	39
31	oxides: <mm:math altimg="si0010.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mm!:msub><mm!:mrow><mml:mi>Ce</mml:mi><mml:mrow><mml:mrow></mml:mrow></mml:mrow>0.25<td>/mml:mn: nsub><mi< td=""><td>· nl:msub><m< td=""></m<></td></mi<></td></mm!:mrow></mm!:msub></mm:math>	/mml:mn: nsub> <mi< td=""><td>· nl:msub><m< td=""></m<></td></mi<>	· nl:msub> <m< td=""></m<>
32	231-232, 68-79. Noises-induced regime shifts and -enhanced stability under a model of lake approaching eutrophication. Ecological Complexity, 2015, 22, 102-108.	2.9	68
33	Delays-based protein switches in a stochastic single-gene network. Physica A: Statistical Mechanics and Its Applications, 2015, 434, 68-83.	2.6	17
34	Noises-induced toggle switch and stability in a gene regulation network. International Journal of Modern Physics B, 2014, 28, 1450223.	2.0	13
35	Delay and noise induced regime shift and enhanced stability in gene expression dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P12015.	2.3	31
36	Stochastic delayed monomer-dimer surface reaction model with various dimer adsorption. European Physical Journal B, 2014, 87, 1.	1.5	19

Dong Tian

#	Article	IF	CITATIONS
37	Noises- and delay-enhanced stability in a bistable dynamical system describing chemical reaction. European Physical Journal B, 2014, 87, 1.	1.5	24
38	Impact of time delays on stochastic resonance in an ecological system describing vegetation. Physica A: Statistical Mechanics and Its Applications, 2014, 408, 96-105.	2.6	89
39	Modeling and simulation of dual-three-phase induction machine with two opened phases. , 2008, , .		O