Henri Darmency

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness. Molecular Ecology, 1994, 3, 37-40.	3.9	84
2	Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theoretical and Applied Genetics, 2000, 100, 1233-1239.	3.6	79
3	Spontaneous hybridizations between oilseed rape and wild radish. Molecular Ecology, 1998, 7, 1467-1473.	3.9	73
4	Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Science, 2013, 211, 42-51.	3.6	60
5	Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Science, 2010, 179, 459-465.	3.6	34
6	Breeding foxtail millet (<i>Setaria italica</i>) for quantitative traits after interspecific hybridization and polyploidization. Genome, 1987, 29, 453-456.	2.0	33
7	Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environmental Biosafety Research, 2007, 6, 197-206.	1.1	31
8	Pleiotropic effects of herbicide-resistance genes on crop yield: a review. Pest Management Science, 2013, 69, 897-904.	3.4	29
9	INTERPRETING THE EVOLUTION OF A TRIAZINE-RESISTANT POPULATION OF POA ANNUA L New Phytologist, 1983, 95, 299-304.	7.3	26
10	Relationship between weed dormancy and herbicide rotations: implications in resistance evolution. Pest Management Science, 2017, 73, 1994-1999.	3.4	25
11	Emergence and growth of hybrids between Brassica napus and Raphanus raphanistrum. New Phytologist, 2003, 158, 561-567.	7.3	23
12	Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in-vivo approach. Transgenic Research, 2013, 22, 747-756.	2.4	23
13	Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds. Environmental Science and Pollution Research, 2017, 24, 11582-11600.	5.3	23
14	Crop and density effects on weed beet growth and reproduction. Weed Research, 2004, 44, 50-59.	1.7	21
15	<i>Centaurea cyanus</i> as a biological indicator of segetal species richness in arable fields. Weed Research, 2012, 52, 551-563.	1.7	21
16	Polymorphism for interspecific hybridisation within a population of wild radish (Raphanus) Tj ETQq0 0 0 rgBT /Ov 169-172.	erlock 10 2.2	Tf 50 147 Td 20
17	GeneSys-Beet: A model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Research, 2008, 107, 245-256.	5.1	20

¹⁸Variation of Transhexadecenoic Acid Content in Two Triazine Resistant Mutants of <i>Chenopodium
album</i>4.81818

HENRI DARMENCY

#	Article	IF	CITATIONS
19	Choosing the best cropping systems to target pleiotropic effects when managing singleâ€gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72, 1910-1925.	3.4	18
20	Pseudo-self-compatibility in Centaurea cyanus L. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 325-331.	1.2	14
21	ldentifying key components of weed beet management using sensitivity analyses of the G <scp>ene</scp> S <scp>ys</scp> â€B <scp>eet</scp> model in GM sugar beet. Weed Research, 2009, 49, 581-591.	1.7	13
22	Genetic diversity of the declining arable plant <i><scp>C</scp>entaurea cyanus</i> : population fragmentation within an agricultural landscape is not associated with enhanced spatial genetic structure. Weed Research, 2014, 54, 436-444.	1.7	13
23	Variation of inbreeding depression in Centaurea cyanus L., a self-incompatible species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 212, 24-29.	1.2	12
24	ldentifying key life-traits for the dynamics and gene flow in a weedy crop relative: Sensitivity analysis of the GeneSys simulation model for weed beet (Beta vulgaris ssp. vulgaris). Ecological Modelling, 2010, 221, 225-237.	2.5	9
25	Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: <i>Brassica napus</i> – <i>Raphanus raphanistrum</i> Model. Genetics, 2017, 206, 1361-1372.	2.9	9
26	Effects of fragmentation and population size on the genetic diversity of Centaurea cyanus (Asteraceae) populations. Plant Ecology and Evolution, 2015, 148, 191-198.	0.7	8
27	Longevity, dormancy and germination of <i>Cyanus segetum</i> . Weed Research, 2017, 57, 361-371.	1.7	8
28	Does genetic variability in weeds respond to nonâ€chemical selection pressure in arable fields?. Weed Research, 2019, 59, 260-264.	1.7	8
29	Genetic Diversity for Competitive and Reproductive Ability in Wild Oats (Avena fatua). Weed Science, 1992, 40, 215-219.	1.5	7
30	Does gall midge larvae cause pre-dispersal seed mortality and limit cornflower population growth?. Acta Oecologica, 2015, 69, 167-172.	1.1	7
31	Abscisic-acid in triazine-resistant and susceptible poa annua. Plant Science, 1987, 49, 81-83.	3.6	6
32	Character inheritance and polymorphism in a wild oat (Avena fatua) population. Canadian Journal of Botany, 1987, 65, 2352-2356.	1.1	6
33	A quantitative genetic examination of nonâ€ŧargetâ€site resistance applied to <i>Avena</i> species. Weed Research, 2018, 58, 69-75.	1.7	5
34	Variation of seed dormancy and longevity in <i>Raphanus raphanistrum</i> L. Seed Science Research, 2018, 28, 34-40.	1.7	5
35	Assessing fitness parameters of hybrids between weed beets and transgenic sugar beets. Plant Breeding, 2017, 136, 969-976.	1.9	2
36	Morphological differences among <i>Raphanus raphanistrum</i> populations and their relationship to related crops. Plant Breeding, 2019, 138, 907-915.	1.9	2

#	Article	IF	CITATIONS
37	Estimated effects of cornflower presence on winter wheat. Biological Agriculture and Horticulture, 2022, 38, 113-123.	1.0	2
38	Consequences of Gene Flow between Transgenic, Insect-Resistant Crops and Their Wild Relatives. , 2016, , 423-430.		0
39	Relative success of frost-resistant variants of Avena fatua: a field experiment. Journal of Agricultural Science, 2020, 158, 558-563.	1.3	0