Dácil Hernández

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706550/publications.pdf

Version: 2024-02-01

516681 526264 31 734 16 27 g-index citations h-index papers 45 45 45 640 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Routes to Carbon–Silicon Bond Formation for the Synthesis of Silicon-Containing Peptides and Azasilaheterocycles. Accounts of Chemical Research, 2013, 46, 457-470.	15.6	184
2	\hat{l}^2 -Fragmentation of Primary Alkoxyl Radicals versus Hydrogen Abstraction: \hat{A} Synthesis of Polyols and \hat{l}_{\pm} , \hat{l}_{\pm} , \hat{l}_{\pm} 0-Differently Substituted Cyclic Ethers from Carbohydrates. Journal of Organic Chemistry, 2003, 68, 5310-5319.	3.2	48
3	Further Studies toward the Stereocontrolled Synthesis of Silicon-Containing Peptide Mimics. Journal of Organic Chemistry, 2010, 75, 3283-3293.	3.2	42
4	Stereocontrolled Synthesis of 2-Substituted-1,3-Azasilaheterocycles. Organic Letters, 2010, 12, 3528-3531.	4.6	41
5	Nucleoside Analogues: Synthesis and Biological Properties of Azanucleoside Derivatives. European Journal of Organic Chemistry, 2014, 2014, 2201-2220.	2.4	41
6	Selective Cleavage of Methoxy Protecting Groups in Carbohydrates. Journal of Organic Chemistry, 2006, 71, 1938-1948.	3.2	35
7	Enamides Accessed from Aminothioesters via a Pd(0)-Catalyzed Decarbonylative/ \hat{l}^2 -Hydride Elimination Sequence. Organic Letters, 2010, 12, 4716-4719.	4.6	34
8	Short and Efficient Synthesis of Chiral Furyl Carbinols from Carbohydrates. Organic Letters, 2007, 9, 1721-1724.	4.6	32
9	Synthesis of Unnatural Amino Acids from Serine Derivatives by \hat{I}^2 -Fragmentation of Primary Alkoxyl Radicals. Journal of Organic Chemistry, 2007, 72, 7260-7269.	3.2	31
10	Reductive Lithiation of Methyl Substituted Diarylmethylsilanes: Application to Silanediol Peptide Precursors. Organic Letters, 2011, 13, 732-735.	4.6	31
11	Synthesis of Alkaloid Analogues from β-Amino Alcohols by β-Fragmentation of Primary Alkoxyl Radicals. European Journal of Organic Chemistry, 2007, 2007, 325-334.	2.4	26
12	Site-selective modification of peptide backbones. Organic Chemistry Frontiers, 2021, 8, 6720-6759.	4.5	24
13	Efficient and Selective Removal of Methoxy Protecting Groups in Carbohydrates. Organic Letters, 2004, 6, 3785-3788.	4.6	23
14	One-Pot Synthesis of Acyclic Nucleosides from Carbohydrate Derivatives, by Combination of Tandem and Sequential Reactions. Journal of Organic Chemistry, 2007, 72, 9523-9532.	3.2	21
15	Oneâ€Pot Synthesis of Azanucleosides from Proline Derivatives – Stereoselectivity in Sequential Processes. European Journal of Organic Chemistry, 2010, 2010, 3847-3857.	2.4	20
16	Enantiopure alkaloid analogues and iminosugars from proline derivatives: stereocontrol in sequential processes. Tetrahedron Letters, 2009, 50, 3974-3977.	1.4	17
17	One-pot synthesis of azanucleosides from proline derivatives. Tetrahedron Letters, 2008, 49, 455-458.	1.4	14
18	Efficient Conversion of Carbohydrates into 1-C-Alditols: Application to the Synthesis of Chiral Î ³ -Substituted Butenolides and Bicyclic Alkaloid Analogues. Journal of Organic Chemistry, 2008, 73, 5287-5297.	3.2	14

#	Article	IF	Citations
19	Metalâ€Free, Siteâ€Selective Peptide Modification by Conversion of "Customizable―Units into βâ€Substit Dehydroamino Acids. Chemistry - A European Journal, 2018, 24, 599-607.	uted 3.3	11
20	Oneâ€Pot Conversion of Proline Derivatives into Iodinated Iminosugarâ€Based Nucleosides, Useful Precursors of Highly Functionalized Nucleoside Analogues. European Journal of Organic Chemistry, 2010, 2010, 6633-6642.	2.4	9
21	Conversion of "Customizable Units―into <i>N</i> -Alkyl Amino Acids and Generation of <i>N</i> -Alkyl Peptides. Journal of Organic Chemistry, 2019, 84, 8392-8410.	3.2	9
22	Coupling Radical and Ionic Processes: An Unusual Rearrangement Affords Sugar and ⟨i⟩C⟨ i⟩â€Glycoside Derivatives. European Journal of Organic Chemistry, 2009, 2009, 3853-3857.	2.4	6
23	Metal-free, direct conversion of \hat{l} ±-amino acids into \hat{l} ±-keto \hat{l} 3-amino esters for the synthesis of \hat{l} ±, \hat{l} 3-peptides. Organic and Biomolecular Chemistry, 2017, 15, 7736-7742.	2.8	6
24	"Doubly Customizable―Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives. Journal of Organic Chemistry, 2021, 86, 2796-2809.	3.2	6
25	FLTX2: A Novel Tamoxifen Derivative Endowed with Antiestrogenic, Fluorescent, and Photosensitizer Properties. International Journal of Molecular Sciences, 2021, 22, 5339.	4.1	4
26	Opto-chemical and laser properties of FLTX1, a novel fluorescent tamoxifen derivative, and its potential applications in breast cancer photodynamic chemotherapy. Optical Materials, 2018, 84, 442-446.	3.6	3
27	Structural diversity using amino acid "Customizable Units― conversion of hydroxyproline (Hyp) into nitrogen heterocycles. Amino Acids, 2022, 54, 955-966.	2.7	1
28	Antimicrobial Activity of Amino Acid Analogues and Their Derivatives. Proceedings (mdpi), 2017, 1, .	0.2	0
29	The Search for New Antimicrobial Agents, by Site-Selective Peptide Modification. Proceedings (mdpi), 2017, 1, .	0.2	0
30	Frontispiece: Metalâ€Free, Siteâ€Selective Peptide Modification by Conversion of "Customizable―Units into βâ€Substituted Dehydroamino Acids. Chemistry - A European Journal, 2018, 24, .	3.3	0
31	"Cut and Paste―Processes in the Search of Bioactive Products: One-Pot, Metal-free O-Radical Scission-Oxidation-Addition of C, N or P-Nucleophiles. Frontiers in Chemistry, 2022, 10, .	3 . 6	O