
Zahar S Vinokurov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ synchrotron Đ¥-ray diffraction study of heat-induced structural changes in TiOy/HAp nanocomposites. Ceramics International, 2022, 48, 2843-2852.	4.8	3
2	Unusual Lattice Parameters Behavior for La1.9Ca0.1NiO4+Î′ at the Temperatures below Oxygen Loss. Crystals, 2022, 12, 344.	2.2	4
3	The activation of MnOx-ZrO2 catalyst in CO oxidation: Operando XRD study. Materials Letters, 2022, 315, 131961.	2.6	3
4	OPERANDO X-RAY DIFFRACTION ANALYSIS OF THE MnOx–ZrO2 CATALYST DURING OXIDATION OF PROPANE. Journal of Structural Chemistry, 2022, 63, 885-894.	1.0	1
5	Self-sustained oscillations in oxidation of methane over palladium: Experimental study and mathematical modeling. Journal of Chemical Physics, 2022, 157, .	3.0	2
6	Self-sustained oscillations in oxidation of methane over palladium: the nature of "low-active―and "highly active―states. Catalysis Science and Technology, 2021, 11, 4392-4397.	4.1	8
7	STUDY OF THERMAL CO-DECOMPOSITION OF MANGANESE AND CERIUM OXALATES IN AIR AND IN INERT MEDIA. Journal of Structural Chemistry, 2021, 62, 467-480.	1.0	1
8	Correlation between Structural and Transport Properties of Ca-Doped La Nickelates and Their Electrochemical Performance. Crystals, 2021, 11, 297.	2.2	11
9	The Formation of Mn-Ce Oxide Catalysts for CO Oxidation by Oxalate Route: The Role of Manganese Content. Nanomaterials, 2021, 11, 988.	4.1	7
10	Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 13625-13642.	7.1	25
11	CuFeAl-composite catalysts of oxidation of gasification products of solid fuels: In situ XAS and XRD study. Radiation Physics and Chemistry, 2020, 175, 108071.	2.8	6
12	Influence of CO oxidation conditions on the Mn-Zr oxide catalyst structure: In situ XRD and MS study. Materials Letters, 2020, 258, 126768.	2.6	5
13	Influence of the Amount of Fe2O3Modifier on the Oxidation Rate of ASD-4 Micron-Sized Powder. Combustion, Explosion and Shock Waves, 2020, 56, 156-162.	0.8	1
14	Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics, 2019, 333, 30-37.	2.7	13
15	Effect of Heating Rate of the Original ASD-4 Powder and the ASD-4 Powder Modified by the V2O5 Oxide on the Phase Composition of Oxidation Products. Combustion, Explosion and Shock Waves, 2019, 55, 289-294.	0.8	2
16	Chemical and Phase Transformation in W-Mn-Containing Catalysts for Oxidative Coupling of Methane. Russian Journal of Physical Chemistry A, 2019, 93, 421-430.	0.6	4
17	The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: <i>In Situ</i> XRD and XANES Study. Inorganic Chemistry, 2019, 58, 4842-4850.	4.0	20
18	Advanced Materials for Solid Oxide Fuel Cells and Membrane Catalytic Reactors. , 2019, , 435-514.		13

ZAHAR S VINOKUROV

#	Article	IF	CITATIONS
19	Oxidation of ASD-4 Powder Modified by V2O5. Combustion, Explosion and Shock Waves, 2018, 54, 58-63.	0.8	6
20	Temperature Hysteresis in the Reaction of Methane Oxidation on a Palladium-Doped Manganese Hexaaluminate Catalyst. Kinetics and Catalysis, 2018, 59, 70-82.	1.0	2
21	The Reasons for Nonlinear Phenomena in Oxidation of Methane over Nickel. Kinetics and Catalysis, 2018, 59, 810-819.	1.0	5
22	High-Temperature X-Ray Diffraction Investigation of the Decomposition Process in Manganese-Gallium Spinel Mn1.5Ga1.5O4. Journal of Structural Chemistry, 2018, 59, 370-376.	1.0	4
23	The origin of self-sustained reaction-rate oscillations in the oxidation of methane over nickel: an operando XRD and mass spectrometry study. Catalysis Science and Technology, 2017, 7, 1646-1649.	4.1	25
24	Protonic Mobility of Neodymium Tungstate. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	2.1	6
25	Synthesis and characterization of mixed manganese-gallium oxides Mn3-xGaxO4 (xÂ=Â1–2) with the spinel structure. Journal of Alloys and Compounds, 2017, 725, 496-503.	5.5	11
26	Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel. Journal of Physical Chemistry A, 2017, 121, 6874-6886.	2.5	8
27	<i>In situ</i> X-ray diffraction investigation of nitride coatings at high-temperature oxidation. Journal of Physics: Conference Series, 2016, 669, 012034.	0.4	3
28	In situ powder X-ray diffraction study of the process of NiMoO4–SiO2 reduction with hydrogen. Journal of Structural Chemistry, 2016, 57, 955-961.	1.0	3
29	In Situ Investigation of Thermo-stimulated Decay of Hydrides of Titanium and Zirconium by Means of X-ray Diffraction of Synchrotron Radiation. Physics Procedia, 2016, 84, 337-341.	1.2	3
30	Application of Synchrotron Radiation for In Situ XRD Investigation of Zirconium Hydrides Formation at Gas-phase Hydrogenation. Physics Procedia, 2016, 84, 342-348.	1.2	7
31	Application of SR Methods for the Study of Nanocomposite Materials for Hydrogen Energy. Physics Procedia, 2016, 84, 397-406.	1.2	9
32	Crystal phase structure investigation in the process of radiation-thermal transformations in systems SrO-Fe2O3, SrCO3-Fe2O3 (perovskite) and garnet Y2O3-Fe2O3. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012110.	0.6	2
33	In situ X-ray investigation of coatings based on titanium nitride upon high-temperature oxidation in air. Journal of Surface Investigation, 2016, 10, 1067-1071.	0.5	1
34	Design of functionally graded multilayer thermal barrier coatings for gas turbine application. Surface and Coatings Technology, 2016, 295, 20-28.	4.8	39
35	Reduction of mixed Mn–Zr oxides: in situ XPS and XRD studies. Dalton Transactions, 2015, 44, 15499-15507.	3.3	92
36	Synthesis and Staging of the Phase Formation for Strontium Ferrites in Thermal and Radiation-Thermal Reactions. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012122.	0.6	19

#	Article	IF	CITATIONS
37	In situ investigation of structural changes in perovskite-like oxides based on lanthanum ferrite in media with different partial pressures of oxygen. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 138-141.	0.6	6