
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705999/publications.pdf Version: 2024-02-01

Μαρδά μικα Μονδ:

#	Article	IF	CITATIONS
1	Fluorescent Calixarene-Schiff as a Nanovehicle with Biomedical Purposes. Chemosensors, 2022, 10, 281.	1.8	3
2	Influence of adding terminal tags on the structural and antimicrobial properties of the peptide caerin 1.1. Aquaculture, 2021, 532, 736035.	1.7	4
3	Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes. International Journal of Molecular Sciences, 2021, 22, 826.	1.8	10
4	Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents. Chemosensors, 2021, 9, 90.	1.8	6
5	Cationic Single-Chained Surfactants with a Functional Group at the End of the Hydrophobic Tail DNA Compacting Efficiency. Pharmaceutics, 2021, 13, 589.	2.0	7
6	Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics, 2021, 13, 1250.	2.0	21
7	Properties of polyplexes formed between a cationic polymer derived from l-arabinitol and nucleic acids. New Journal of Chemistry, 2021, 45, 10098-10108.	1.4	2
8	Influence of the surfactant degree of oligomerization on the formation of cyclodextrin: surfactant inclusion complexes. Arabian Journal of Chemistry, 2020, 13, 2318-2330.	2.3	6
9	Influence of the AOT Counterion Chemical Structure on the Generation of Organized Systems. Langmuir, 2020, 36, 10785-10793.	1.6	12
10	Metallo-Liposomes of Ruthenium Used as Promising Vectors of Genetic Material. Pharmaceutics, 2020, 12, 482.	2.0	9
11	Self-aggregation in aqueous solution of amphiphilic cationic calix[4]arenes. Potential use as vectors and nanocarriers. Journal of Molecular Liquids, 2020, 304, 112724.	2.3	18
12	Influence of the degree of oligomerization of surfactants on the DNA/surfactant interaction. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110399.	2.5	5
13	Use of Ionic Liquids-like Surfactants for the Generation of Unilamellar Vesicles with Potential Applications in Biomedicine. Langmuir, 2019, 35, 13332-13339.	1.6	23
14	Optimized Preparation of Levofloxacin Loaded Polymeric Nanoparticles. Pharmaceutics, 2019, 11, 57.	2.0	37
15	Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes. Pharmaceutics, 2019, 11, 69.	2.0	47
16	A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid. Pharmaceutics, 2019, 11, 632.	2.0	13
17	Preparation and characterization of metallomicelles of Ru(II). Cytotoxic activity and use as vector. Colloids and Surfaces B: Biointerfaces, 2019, 175, 116-125.	2.5	13
18	Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation. Journal of Colloid and Interface Science, 2018, 521, 197-205.	5.0	43

#	Article	IF	CITATIONS
19	Transfection of plasmid DNA by nanocarriers containing a gemini cationic lipid with an aromatic spacer or its monomeric counterpart. Colloids and Surfaces B: Biointerfaces, 2018, 161, 519-527.	2.5	25
20	Influence of the cyclodextrin nature on the decompaction of dimeric cationic surfactant-DNA complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 133-141.	2.3	2
21	<i>P</i> â€Sulfocalix[6]arene as Nanocarrier for Controlled Delivery of Doxorubicin. Chemistry - an Asian Journal, 2017, 12, 679-689.	1.7	29
22	Stoppering/unstoppering of a rotaxane formed between an N-hetorycle ligand containing surfactant: β-cyclodextrin pseudorotaxane and pentacyanoferrate(II) ions. Journal of Colloid and Interface Science, 2017, 497, 343-349.	5.0	4
23	Host-guest interactions between cyclodextrins and surfactants with functional groups at the end of the hydrophobic tail. Journal of Colloid and Interface Science, 2017, 491, 336-348.	5.0	19
24	Binding and reactivity under restricted geometry conditions: Applicability of the Pseudophase Model to thermal and photochemical processes. Current Opinion in Colloid and Interface Science, 2017, 32, 23-28.	3.4	2
25	Study of ionic surfactants interactions with carboxylated single-walled carbon nanotubes by using ion-selective electrodes. Electrochemistry Communications, 2016, 67, 31-34.	2.3	15
26	Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence. Colloids and Surfaces B: Biointerfaces, 2016, 144, 311-318.	2.5	16
27	Binding of DNA by a dinitro-diester calix[4]arene: Denaturation and condensation of DNA. Colloids and Surfaces B: Biointerfaces, 2015, 127, 65-72.	2.5	7
28	Cooperative interaction between metallosurfactants, derived from the [Ru(2,2′-bpy)3]2+ complex, and DNA. Colloids and Surfaces B: Biointerfaces, 2015, 135, 817-824.	2.5	20
29	Reversibility of the interactions between a novel surfactant derived from lysine and biomolecules. Colloids and Surfaces B: Biointerfaces, 2015, 135, 346-356.	2.5	10
30	Colloidal and biological properties of cationic single-chain and dimeric surfactants. Colloids and Surfaces B: Biointerfaces, 2014, 114, 247-254.	2.5	43
31	Thermodynamic Study of Bile Salts Micellization. Journal of Chemical & Engineering Data, 2014, 59, 433-438.	1.0	38
32	Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide. Colloids and Surfaces B: Biointerfaces, 2014, 118, 90-100.	2.5	18
33	Self-aggregation of cationic dimeric surfactants in water–ionic liquid binary mixtures. Journal of Colloid and Interface Science, 2014, 430, 326-336.	5.0	13
34	Role of the spacer in the non ideal behavior of alkanedyil-α,ï‰-bis(dodecyldimethylammonium) bromide-MEGA10 binary mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 139-146.	2.3	5
35	Binding of Cationic Single-Chain and Dimeric Surfactants to Bovine Serum Albumin. Langmuir, 2013, 29, 7629-7641.	1.6	40
36	Synthesis and physicochemical characterization of alkanedyil-α-ω-bis(dimethyldodecylammonium) bromide, 12-s-12, 2Brâ'', surfactants with s= 7, 9, 11 in aqueous medium. Journal of Colloid and Interface Science, 2012, 386, 228-239.	5.0	19

#	Article	IF	CITATIONS
37	Kinetic studies in micellar solutions of novel bromide mono- and dimeric surfactants with phenyl and cyclohexyl rings in the head group. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 52-60.	2.3	6
38	Comparative evaluation of the antioxidant activity of melatonin and related indoles. Journal of Food Composition and Analysis, 2012, 28, 16-22.	1.9	34
39	Binary mixtures with novel monomeric and dimeric surfactants: Influence of the head group nature and number of hydrophobic chains on non-ideality. Journal of Colloid and Interface Science, 2012, 368, 326-335.	5.0	3
40	Study of the S _N 2 Substitution Reactions Between Methyl Naphtaleneâ€2â€5ulfonate and Methyl 4â€Nitrobenzene Sulfonate and Bromide Ions in Dodecyl Dibromide Dimeric Micellar Solutions in the Absence and Presence of Alcohols. Journal of Surfactants and Detergents, 2012, 15, 235-244.	1.0	3
41	Study of the Reaction 2-(p-Nitrophenyl)ethyl Bromide + OHâ^' in Dimeric Micellar Solutions. Molecules, 2011, 16, 9467-9479.	1.7	1
42	Physicochemical characterization of bromide mono- and dimeric surfactants with phenyl and cyclohexyl rings in the head group. Journal of Colloid and Interface Science, 2011, 363, 284-294.	5.0	19
43	Micellization in Water-Polar Organic Solvent Binary Mixtures. Current Physical Chemistry, 2011, 1, 352-368.	0.1	0
44	Micellization and micellar growth of alkanediyl-α,ω-bis(dimethyldodecylammonium bromide) surfactants in the presence of medium-chain linear alcohols. Journal of Colloid and Interface Science, 2010, 342, 382-391.	5.0	28
45	Study of the Micellization and Micellar Growth in Pure Alkanediyl-α-ω-Bis(dodecyldimethylammonium) Bromide and MEGA10 Surfactant Solutions and Their Mixtures. Influence of the Spacer on the Enthalpy Change Accompanying Sphere-to-Rod Transitions. Journal of Physical Chemistry B, 2010, 114, 7817-7829.	1.2	19
46	Concentration and Medium Micellar Kinetic Effects Caused by Morphological Transitions. Langmuir, 2010, 26, 18659-18668.	1.6	16
47	Effects of glycols on the thermodynamic and micellar properties of TTAB in water. Journal of Colloid and Interface Science, 2009, 338, 207-215.	5.0	40
48	Waterâ^'Ethylene Glycol Cationic Dimeric Micellar Solutions: Aggregation, Micellar Growth, and Characteristics As Reaction Media. Journal of Physical Chemistry B, 2009, 113, 7767-7779.	1.2	54
49	Study of the reaction of methyl 4â€nitrobenzenesulfonate and Br ^{â^'} in water–glycerol cationic micellar solutions. International Journal of Chemical Kinetics, 2008, 40, 845-582.	1.0	4
50	Study of the reaction between methyl 4-nitrobenzenesulfonate and bromide ions in mixed single-chain-gemini micellar solutions: Kinetic evidence for morphological transitions. Journal of Colloid and Interface Science, 2008, 328, 324-330.	5.0	15
51	Mixtures of Monomeric and Dimeric Surfactants: Hydrophobic Chain Length and Spacer Group Length Effects on Non Ideality. Journal of Physical Chemistry B, 2008, 112, 11942-11949.	1.2	56
52	Effects of Addition of Polar Organic Solvents on Micellization. Langmuir, 2008, 24, 12785-12792.	1.6	112
53	Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 71, 230-235.	2.9	671
54	Effects of Organic Solvent Addition on the Aggregation and Micellar Growth of Cationic Dimeric Surfactant 12-3-12,2Br ⁻ . Langmuir, 2007, 23, 11496-11505.	1.6	83

#	Article	IF	CITATIONS
55	Effects of head group size on the reaction methyl 4-nitrobenzenesulfonate + Brâ^' in water-ethylene glycol cetyltrialkylammonium bromide micellar solutions. International Journal of Chemical Kinetics, 2007, 39, 346-352.	1.0	6
56	Effects of head group size on micellization of cetyltrialkylammonium bromide surfactants in water–ethylene glycol mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 177-185.	2.3	50
57	Micellar kinetic effects in gemini micellar solutions: Influence of sphere-to-rod transitions on kinetics. Journal of Colloid and Interface Science, 2007, 313, 542-550.	5.0	25
58	Role of the solvophobic effect on micellization. Journal of Colloid and Interface Science, 2007, 316, 787-795.	5.0	85
59	Effects of Ethylene Glycol Addition on the Aggregation and Micellar Growth of Gemini Surfactants. Langmuir, 2006, 22, 9519-9525.	1.6	98
60	Study of the bromide ion reaction with methyl naphthalene-2-sulfonate in water–DMSO TTAB micellar solutions. Journal of Physical Organic Chemistry, 2006, 19, 676-682.	0.9	12
61	Role of the counterion in the effects of added ethylene glycol to aqueous alkyltrimethylammonium micellar solutions. Journal of Colloid and Interface Science, 2006, 298, 942-951.	5.0	54
62	Reaction of methyl 4-nitrobenzenesulfonate with Br- in water-formamide tetradecyltrimethylammonium bromide micellar solutions. Reaction Kinetics and Catalysis Letters, 2006, 89, 177-182.	0.6	4
63	Waterâ^'N,N-Dimethylformamide Alkyltrimethylammonium Bromide Micellar Solutions:  Thermodynamic, Structural, and Kinetic Studies. Langmuir, 2005, 21, 3303-3310.	1.6	80
64	Micellar Solutions of Sulfobetaine Surfactants in Waterâ^'Ethylene Glycol Mixtures:Â Surface Tension, Fluorescence, Spectroscopic, Conductometric, and Kinetic Studies. Langmuir, 2005, 21, 7161-7169.	1.6	81
65	Effects of alcohols on micellization and on the reaction methyl 4-nitrobenzenesulfonate + Brâ~in cetyltrimethylammonium bromide aqueous micellar solutions. International Journal of Chemical Kinetics, 2004, 36, 634-641.	1.0	11
66	Kinetic Study in Waterâ ''Ethylene Glycol Cationic, Zwitterionic, Nonionic, and Anionic Micellar Solutions. Langmuir, 2004, 20, 9945-9952.	1.6	41
67	Conductometric, Surface Tension, and Kinetic Studies in Mixed SDSâ^'Tween 20 and SDSâ^'SB3-12 Micellar Solutions. Langmuir, 2004, 20, 10858-10867.	1.6	38
68	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 78, 113-119.	0.6	4
69	Study of the reaction methyl 4-nitrobenzene-sulfonate + Clâ^'in mixed hexadecyltrimethyl-ammonium chloride-triton X-100 micellar solutions. International Journal of Chemical Kinetics, 2003, 35, 45-51.	1.0	13
70	Influence of the addition of alcohol on the reaction methyl-4-nitrobenzenesulfonate + Brâ^' in tetradecyltrimethylammonium bromide aqueous micellar solutions. Journal of Colloid and Interface Science, 2003, 266, 208-214.	5.0	11
71	Waterâ^'Ethylene Glycol Alkyltrimethylammonium Bromide Micellar Solutions as Reaction Media:Â Study of the Reaction Methyl 4-Nitrobenzenesulfonate + Br Langmuir, 2003, 19, 8685-8691.	1.6	34
72	Waterâ^'Ethylene Glycol Alkyltrimethylammonium Bromide Micellar Solutions as Reaction Media:Â Study of Spontaneous Hydrolysis of Phenyl Chloroformate. Langmuir, 2003, 19, 7206-7213.	1.6	64

#	Article	IF	CITATIONS
73	The Reaction Methyl 4-Nitrobenzenesulfonate + Br-in Cationic and Zwitterionic Micellar Solutions. Langmuir, 2002, 18, 3476-3481.	1.6	15
74	Micellar medium effects on the hydrolysis of phenyl chloroformate in ionic, zwitterionic, nonionic, and mixed micellar solutions. International Journal of Chemical Kinetics, 2002, 34, 445-451.	1.0	28
75	Kinetic Micellar Effects in Tetradecyltrimethylammonium Bromide–Pentanol Micellar Solutions. Journal of Colloid and Interface Science, 2002, 248, 455-461.	5.0	19
76	Kinetic Effects in non Ionic Micellar Solutions. Reaction Kinetics and Catalysis Letters, 2002, 76, 11-18.	0.6	4
77	Study of the reaction 1-methoxy-4-(methylthio)benzene + IO4-: importance of micellar medium effects. New Journal of Chemistry, 2001, 25, 1084-1090.	1.4	5
78	Influence of the Nature of the Cation on the Reaction DDT + OH-in Sulfobetaine Micellar Solutions in the Presence of Added Salts. Langmuir, 2001, 17, 1860-1863.	1.6	3
79	Study of the reaction Fe(CN)4(bpy)2â^'+ S2O82â^'in Sulfobetaine Aqueous Micellar Solutions. International Journal of Chemical Kinetics, 2001, 33, 225-231.	1.0	2
80	Study of the Reaction 2-(p-Nitrophenyl)Ethyl Bromide + OHâ^' in Sulfobetaine Aqueous Micellar Solutions in the Presence and Absence of Added Salts. Journal of Colloid and Interface Science, 2001, 235, 260-264.	5.0	5
81	STUDY OF DEHYDROCHLORINATION REACTIONS IN MICELLAR SOLUTIONS. , 2001, , 427-464.		Ο
82	A kinetic method to estimate dissociation degrees of micellar aggregates in TTAB-alcohol aqueous micellar solutions. International Journal of Chemical Kinetics, 2000, 32, 204-209.	1.0	1
83	Study of Ligand Substitution Reactions at Pentacyanoferrates(II) in Aqueous Salt and Micellar Solutions. Journal of Colloid and Interface Science, 2000, 225, 47-53.	5.0	13
84	Title is missing!. Reaction Kinetics and Catalysis Letters, 2000, 70, 389-394.	0.6	8
85	Study of the Dehydrochlorination of DDT in Basic Media in Sulfobetaine Aqueous Micellar Solutions. Langmuir, 2000, 16, 3182-3186.	1.6	16
86	Study of the reaction Fe(CN)5(4-CNpy)3? + S2O82? in aqueous salt and micellar solutions. International Journal of Chemical Kinetics, 1999, 31, 229-235.	1.0	4
87	Kinetic Effects of Added Electrolytes on a Micelle-Modified Reaction. Langmuir, 1999, 15, 2254-2258.	1.6	14
88	Influence of Changes in the Interfacial Electrical Potential on a Ligand Substitution Reaction in Aqueous Sodium Dodecyl Sulfate Micellar Solutions. Langmuir, 1999, 15, 4441-4446.	1.6	9
89	Addition of Alcohols to a Cationic Micellar Solution and Their Kinetic Effects on Two Micellar-Modified Reactions. Langmuir, 1999, 15, 1588-1590.	1.6	10
90	Study of the Reaction 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane + OH-in Nonionic Micellar Solutions. Langmuir, 1999, 15, 7876-7879.	1.6	10

#	Article	IF	CITATIONS
91	A study of the electron-transfer reaction between Fe(CN)2(bpy)2 and S2O82- in solvent mixtures: the translational component of solvent reorganization. New Journal of Chemistry, 1998, 22, 39-44.	1.4	8
92	Dehydrochlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane in Cationic Micellar Systems. Langmuir, 1998, 14, 3524-3530.	1.6	18
93	Study of Ligand Substitution Reactions Involving the Fe(CN)5H2O3- Ions in Surfactant Solutions. Langmuir, 1997, 13, 4239-4245.	1.6	26
94	Study of the ligand substitution reaction Fe (CN)5H2O3? + pyrazine in micellar solutions. International Journal of Chemical Kinetics, 1997, 29, 377-384.	1.0	32
95	Micellar Effects on the Reaction S2O82â^'+ Fe(CN)4(bpy)2â^'. Journal of Colloid and Interface Science, 1997, 191, 58-64.	5.0	12
96	Use of the Brönsted Equation in the Interpretation of Micellar Effects in Kinetics. Langmuir, 1996, 12, 4981-4986.	1.6	48
97	Micellar and Salt Effects on the Binuclear Complex Formation between Fe(CN)5H2O3-and Co(en)2(2-pzCO2)2+. Langmuir, 1996, 12, 4090-4094.	1.6	29
98	Micellar Effects on the Electron Transfer Reaction within the Ion Pair [(NH3)5Co(N-cyanopiperidine)]3+/[Fe(CN)6]4 The Journal of Physical Chemistry, 1996, 100, 16978-16983.	2.9	24
99	Common basis for salt, micelle and microemulsion effects upon the ionic reaction of hexachloroiridate(IV) with thiosulfate. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3381-3384.	1.7	7
100	The use of free energy relationships to rationalize kinetic data in complex solvent mixtures. International Journal of Chemical Kinetics, 1996, 28, 57-60.	1.0	11
101	Kamlet-Taft solvatochromic parameters of aqueous binary mixtures oftert-butyl alcohol and ethyleneglycol. Journal of Solution Chemistry, 1996, 25, 289-293.	0.6	23
102	Study of the reduction of Co(NH3)4(pzCO2)2+ by Fe(CN)64- in binary aqueous mixtures: An interpretation of solvent effects based on spectroscopic data. Studies in Physical and Theoretical Chemistry, 1995, 83, 261-264.	0.0	0
103	Study of the reduction of Co(NH3)4(pzCO2)2+ by Fe(CN)54â^' in binary aquerous mixtures: An interpretations of solvent effects based on spectroscopic data. Journal of Molecular Liquids, 1995, 65-66, 261-264.	2.3	8
104	Solvent effects on the dissociation of aliphatic carboxylic acids in water-N,N-dimethylformamide mixtures: Correlation between acidity constants and solvatochromic parameters. Journal of Solution Chemistry, 1994, 23, 1101-1109.	0.6	50
105	Salt effects upon reactions of different charge type reactants: Peroxodisulphate Oxidations of Fe(CN)4(bpy)2âr',cis-Fe(CN)2(bpy)2and Fe(bpy)32+and Iron(II) Oxidation by Co(NH3)5Cl2+. International Journal of Chemical Kinetics, 1994, 26, 299-307.	1.0	14
106	Oxidation of Fe(CN)4(bpy)2- by S202-8 in AOT-Oil-Water Microemulsions. Journal of Colloid and Interface Science, 1994, 166, 503-505.	5.0	7
107	Microemulsions as a New Working Medium in Physical Chemistry: An Integrated Practical Approach. Journal of Chemical Education, 1994, 71, 446.	1.1	25
108	Study of the Reaction Fe(CN)5(4-CNpy)3- + CN- in AOT-Oil-Water Microemulsions. Journal of Colloid and Interface Science, 1993, 159, 53-57.	5.0	6

#	Article	IF	CITATIONS
109	Solvent effects on binuclear complex formation between aquopentacyanoferrate(II) and tetraamminepyrazinecarboxylatocobalt(III) in binary aqueous mixtures. International Journal of Chemical Kinetics, 1993, 25, 469-477.	1.0	17
110	On the importance of specific solvent effects in electron trransfer reactions. International Journal of Chemical Kinetics, 1993, 25, 891-899.	1.0	13
111	Role of ionic strength in the binuclear complex formation between aquopentacyanoferrate(II) and tetraamminepyrazinecarboxylatocobalt(III) ions. Inorganica Chimica Acta, 1993, 208, 213-217.	1.2	6
112	Volumes of activation for dissociation of pentacyanoferrates(II) through pressure and salt effects on reactivity. Transition Metal Chemistry, 1993, 18, 179-181.	0.7	9
113	Supramolecular Photochemistry and Photophysics. Adducts of Metal Complexes with the Natural Ionophore Lasalocid A Anion. Israel Journal of Chemistry, 1992, 32, 47-51.	1.0	5
114	Kinetic study of the oxidation of iodide by hexachloroiridate(IV) in concentrated electrolyte solutions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 591-594.	1.7	11
115	Oxidation of Fe(CN)4–6 by S2O2–8 in AOT–oil–water microemulsions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2701-2704.	1.7	29
116	Salt effects on the kinetics of dissociation of the pentacyano-4-cyanopyridineferrate(II) anion. Transition Metal Chemistry, 1992, 17, 231-234.	0.7	16
117	Medium effects on the ligand field bands of hexathiocyanato- chromate(III). Transition Metal Chemistry, 1992, 17, 5-8.	0.7	1
118	Estimation of the aggregation number and core radius of microemulsions. Monatshefte Für Chemie, 1992, 123, 383-389.	0.9	19
119	Specific cation-solute interactions as a major contributor to the salt effects on charge-transfer transitions. Inorganica Chimica Acta, 1992, 197, 227-232.	1.2	8
120	Salt effects in the reaction between IrCl 6 2â^' and MnEDTA2â^'. Reaction Kinetics and Catalysis Letters, 1992, 46, 131-138.	0.6	3
121	KINETIC SALT EFFECTS IN THE PHOTOCHEMICAL REACTION BETWEEN Ru(bpy)2/3+ Fe3+. Photochemistry and Photobiology, 1992, 55, 367-372.	1.3	4
122	Microemulsions as a medium in chemical kinetics, II. The Iâ^'+ S2O8=and crystal Violet + OHâ^'reactions in different surfactant/oil/water microemulsions. International Journal of Chemical Kinetics, 1992, 24, 19-30.	1.0	29
123	Role of ionic strength in the kinetics of formation of the monochelate of nickel(II) with heptane-3,5-dione. International Journal of Chemical Kinetics, 1992, 24, 359-368.	1.0	6
124	Microemulsions as a medium in chemical kinetics: the persulfate-iodide reaction. The Journal of Physical Chemistry, 1991, 95, 6001-6004.	2.9	32
125	Kinetics of the oxidation of iodide by persulphate in AOT–oil–water microemulsions. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 129-132.	1.7	24
126	Substitution reactions at pentacyanoferrate(II) complexes: linear free-energy relationships in mixed solvents. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2573-2577.	1.7	36

#	Article	IF	CITATIONS
127	Kinetics of the oxidation of iodide by peroxodisulphate in reverse micelles. Journal of Colloid and Interface Science, 1991, 141, 454-458.	5.0	12
128	Salt effects on charge-transfer transitions. Inorganica Chimica Acta, 1991, 188, 185-189.	1.2	6
129	Solvent effects on substitution reactions at complexes of the [Fe(CN)5L]3- type in binary aqueous mixtures. Transition Metal Chemistry, 1991, 16, 165-168.	0.7	12
130	Solvent dependence of charge-transfer transitions in binary aqueous mixtures. Transition Metal Chemistry, 1991, 16, 230-235.	0.7	6
131	The formation of the complex pentacyano(3-pyrazincarboxylate)ferrate(II) in various water-cosolvent mixtures. International Journal of Chemical Kinetics, 1990, 22, 1017-1026.	1.0	14
132	Kinetic salt effects in intramolecular electron transfer. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 937-940.	1.7	17
133	Medium effects upon the kinetics of formation of nickel(II) and cobalt(II) pyridine 2-azo-p-dimethylaniline. Transition Metal Chemistry, 1989, 14, 466-470.	0.7	4
134	Kinetics of peroxodisulphate oxidation of octacyanomolybdate(IV) in concentrated aqueous salt solutions. Transition Metal Chemistry, 1988, 13, 150-154.	0.7	11
135	Kinetic salt effects in the bromide oxidation by bromate. Journal of Solution Chemistry, 1988, 17, 653-659.	0.6	13
136	Salt effect in the oxidation of iodide by permanganate. Reaction Kinetics and Catalysis Letters, 1986, 32, 423-428.	0.6	5