Hector Rosas-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicology Letters, 2009, 191, 305-313.	0.8	109
2	Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Molecular Neurobiology, 2015, 52, 913-926.	4.0	80
3	Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?. Brain, Behavior, and Immunity, 2021, 95, 7-14.	4.1	59
4	Role of silver nanoparticles (AgNPs) on the cardiovascular system. Archives of Toxicology, 2016, 90, 493-511.	4.2	56
5	Amyloid Beta 25–35 induces blood-brain barrier disruption in vitro. Metabolic Brain Disease, 2019, 34, 1365-1374.	2.9	35
6	Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells. Neuroscience Letters, 2016, 629, 125-130.	2.1	33
7	The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacologica Sinica, 2015, 36, 572-586.	6.1	26
8	Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicology Letters, 2014, 224, 246-256.	0.8	23
9	Effect of 45nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: Role of nitric oxide. Toxicology Letters, 2011, 207, 306-313.	0.8	22
10	Protein Kinases and Parkinson's Disease. International Journal of Molecular Sciences, 2016, 17, 1585.	4.1	22
11	Isolation and Culture of Brain Microvascular Endothelial Cells for In Vitro Blood-Brain Barrier Studies. Methods in Molecular Biology, 2018, 1727, 315-331.	0.9	22
12	Prolactin and Blood-Brain Barrier Permeability. Current Neurovascular Research, 2013, 10, 278-286.	1.1	21
13	Prolactin Protects Against the Methamphetamine-Induced Cerebral Vascular Toxicity. Current Neurovascular Research, 2013, 10, 346-355.	1.1	19
14	Identification of altered microRNAs in serum of a mouse model of Parkinson's disease. Neuroscience Letters, 2018, 687, 1-9.	2.1	18
15	Changes in the metabolome and microRNA levels in biological fluids might represent biomarkers of neurotoxicity: A trimethyltin study. Experimental Biology and Medicine, 2018, 243, 228-236.	2.4	17
16	Evaluation of vascular tone and cardiac contractility in response to silver nanoparticles, using Langendorff rat heart preparation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1507-1518.	3.3	16
17	Characterization of Biaxial Stretch as an In Vitro Model of Traumatic Brain Injury to the Blood-Brain Barrier. Molecular Neurobiology, 2018, 55, 258-266.	4.0	16
18	Characterization of Serum Exosomes from a Transgenic Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 388-395.	1.4	16

HECTOR ROSAS-HERNANDEZ

#	Article	IF	CITATIONS
19	Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). Journal of Nanoparticle Research, 2015, 17, 1.	1.9	13
20	Characterization of uniaxial high-speed stretch as an in vitro model of mild traumatic brain injury on the blood-brain barrier. Neuroscience Letters, 2018, 672, 123-129.	2.1	12
21	Inhibition of prolactin with bromocriptine for 28days increases blood–brain barrier permeability in the rat. Neuroscience, 2015, 301, 61-70.	2.3	11
22	3,4-methylenedioxypyrovalerone (MDPV) Induces Cytotoxic Effects on Human Dopaminergic SH-SY5Y Cells. Journal of Drug and Alcohol Research, 2016, 5, 1-6.	0.9	11
23	In vitro detection of cytotoxicity using FluoroJade-C. Toxicology in Vitro, 2014, 28, 469-472.	2.4	10
24	Cytotoxicity profile of pristine graphene on brain microvascular endothelial cells. Journal of Applied Toxicology, 2019, 39, 966-973.	2.8	10
25	Modification of methods to use Congo-red stain to simultaneously visualize amyloid plaques and tangles in human and rodent brain tissue sections. Metabolic Brain Disease, 2020, 35, 1371-1383.	2.9	9
26	Single-walled carbon nanotubes (SWCNTs) induce vasodilation in isolated rat aortic rings. Toxicology in Vitro, 2015, 29, 657-662.	2.4	8
27	Monoaminergic toxicity induced by cathinone phthalimide: An in vitro study. Neuroscience Letters, 2017, 655, 76-81.	2.1	8
28	Stretch-Induced Deformation as a Model to Study Dopaminergic Dysfunction in Traumatic Brain Injury. Neurochemical Research, 2019, 44, 2546-2555.	3.3	8
29	Impaired Amyloid Beta Clearance and Brain Microvascular Dysfunction are Present in the Tg-SwDI Mouse Model of Alzheimer's Disease. Neuroscience, 2020, 440, 48-55.	2.3	8
30	Blood–Brain Barrier: Physiological and Functional Considerations. , 2018, , 229-236.		3
31	Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicology in Vitro, 2020, 64, 104471.	2.4	2
32	Ontogeny of Second Messenger Systems. , 2018, , 199-206.		0

Ontogeny of Second Messenger Systems. , 2018, , 199-206. 32