Teresa Fuertes-MendizÃ;bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705585/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimethylpyrazole-based nitrification inhibitors have a dual role in N2O emissions mitigation in forage systems under Atlantic climate conditions. Science of the Total Environment, 2022, 807, 150670.	8.0	13
2	Response of Wheat Storage Proteins and Breadmaking Quality to Dimethylpyrazole-Based Nitrification Inhibitors under Different Nitrogen Fertilization Splitting Strategies. Plants, 2021, 10, 703.	3.5	0
3	Compost and PGP-Based Biostimulant as Alternative to Peat and NPK Fertilization in Chestnut (Castanea Sativa Mill.) Nursery Production. Forests, 2021, 12, 850.	2.1	4
4	Relationship between tillage management and DMPSA nitrification inhibitor efficiency. Science of the Total Environment, 2020, 718, 134748.	8.0	26
5	The scarcity and distribution of rainfall drove the performance (i.e., mitigation of N oxide emissions,) Tj ETQq1 1 C semiarid conditions. Archives of Agronomy and Soil Science, 2020, 66, 1827-1844.).784314 r 2.6	gBT /Over o 5
6	Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2020, 2, 421-438.	12.6	333
7	Assessing the evolution of wheat grain traits during the last 166Âyears using archived samples. Scientific Reports, 2020, 10, 21828.	3.3	12
8	Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea. Plants, 2020, 9, 322.	3.5	19
9	Metabolic Effects of Elevated CO ₂ on Wheat Grain Development and Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 8441-8451.	5.2	29
10	Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions. Scientific Reports, 2019, 9, 2346.	3.3	31
11	Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 2019, 651, 2354-2364.	8.0	339
12	DMPSA and DMPP equally reduce N2O emissions from a maize-ryegrass forage rotation under Atlantic climate conditions. Atmospheric Environment, 2018, 187, 255-265.	4.1	26
13	15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. Frontiers in Plant Science, 2018, 9, 853.	3.6	22
14	Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agriculture, Ecosystems and Environment, 2018, 265, 421-431.	5.3	45
15	Biochar research activities and their relation to development and environmental quality. A meta-analysis. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	17
16	BIOCHAR AS A TOOL TO REDUCE THE AGRICULTURAL GREENHOUSE-GAS BURDEN – KNOWNS, UNKNOWNS AND FUTURE RESEARCH NEEDS. Journal of Environmental Engineering and Landscape Management, 2017, 25, 114-139.	1.0	144
17	Elevated CO2 Induces Root Defensive Mechanisms in Tomato Plants When Dealing with Ammonium Toxicity. Plant and Cell Physiology, 2017, 58, 2112-2125.	3.1	45
18	Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop and Pasture Science, 2016, 67, 147.	1.5	33

#	Article	IF	CITATIONS
19	Plasticity to salinity and transgenerational effects in the nonnative shrub <i>Baccharis halimifolia</i> : Insights into an estuarine invasion. American Journal of Botany, 2016, 103, 808-820.	1.7	22
20	The new nitrification inhibitor 3,4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N 2 O emissions from wheat crops under humid Mediterranean conditions. European Journal of Agronomy, 2016, 80, 78-87.	4.1	46
21	Splitting the application of 3,4-dimethylpyrazole phosphate (DMPP): Influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions. European Journal of Agronomy, 2015, 64, 47-57.	4.1	51
22	High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. Journal of Plant Physiology, 2013, 170, 758-771.	3.5	81
23	Ammonium as sole N source improves grain quality in wheat. Journal of the Science of Food and Agriculture, 2013, 93, 2162-2171.	3.5	43
24	Late nitrogen fertilization affects nitrogen remobilization in wheat. Journal of Plant Nutrition and Soil Science, 2012, 175, 115-124.	1.9	13
25	Late nitrogen fertilization affects carbohydrate mobilization in wheat. Journal of Plant Nutrition and Soil Science, 2010, 173, 907-919.	1.9	22
26	Improving wheat breadmaking quality by splitting the N fertilizer rate. European Journal of Agronomy, 2010, 33, 52-61.	4.1	82