Marcelo Calderon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705057/publications.pdf

Version: 2024-02-01

152 papers 5,764 citations

71102 41 h-index 70 g-index

159 all docs

 $\begin{array}{c} 159 \\ \\ \text{docs citations} \end{array}$

159 times ranked 6769 citing authors

#	Article	IF	CITATIONS
1	Dendritic Polyglycerols for Biomedical Applications. Advanced Materials, 2010, 22, 190-218.	21.0	590
2	Stimuli-responsive nanogel composites and their application in nanomedicine. Chemical Society Reviews, 2015, 44, 6161-6186.	38.1	449
3	Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chemical Society Reviews, 2012, 41, 2824-2848.	38.1	384
4	Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. Journal of the American Chemical Society, 2011, 133, 20288-20300.	13.7	166
5	Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie, 2010, 92, 1242-1251.	2.6	126
6	Crossing biological barriers with nanogels to improve drug delivery performance. Journal of Controlled Release, 2019, 307, 221-246.	9.9	118
7	<i>In vivo</i> delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB Journal, 2010, 24, 3122-3134.	0.5	115
8	Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials, 2010, 31, 4268-4277.	11.4	114
9	Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. Journal of Controlled Release, 2011, 151, 295-301.	9.9	111
10	Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3725-3728.	2.2	102
11	Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Biomacromolecules, 2017, 18, 1762-1771.	5.4	98
12	New approaches from nanomedicine for treating leishmaniasis. Chemical Society Reviews, 2016, 45, 152-168.	38.1	93
13	Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 2016, 239, 159-168.	9.9	81
14	Functional Nanogels for Biomedical Applications. Current Medicinal Chemistry, 2012, 19, 5029-5043.	2.4	79
15	Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1179-1187.	3.3	74
16	Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter, 2011, 7, 11259.	2.7	72
17	Dendritic Polyglycerols with Oligoamine Shells Show Low Toxicity and High siRNA Transfection Efficiency in Vitro. Bioconjugate Chemistry, 2010, 21, 1744-1752.	3.6	69
18	Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano, 2016, 10, 2028-2045.	14.6	64

#	Article	IF	CITATIONS
19	NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. Journal of Controlled Release, 2019, 311-312, 147-161.	9.9	64
20	Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. Journal of Controlled Release, 2016, 228, 159-169.	9.9	63
21	Targeted Delivery of Dendritic Polyglycerol–Doxorubicin Conjugates by scFv-SNAP Fusion Protein Suppresses EGFR ⁺ Cancer Cell Growth. Biomacromolecules, 2013, 14, 2510-2520.	5.4	62
22	Thermoresponsive Nanodevices in Biomedical Applications. Macromolecular Bioscience, 2015, 15, 183-199.	4.1	61
23	Glycine-Terminated Dendritic Amphiphiles for Nonviral Gene Delivery. Biomacromolecules, 2012, 13, 3087-3098.	5.4	60
24	Breaking the Barrier - Potent Anti-Inflammatory Activity following Efficient Topical Delivery of Etanercept using Thermoresponsive Nanogels. Theranostics, 2018, 8, 450-463.	10.0	58
25	Nanocarriers for Skin Applications: Where Do We Stand?. Angewandte Chemie - International Edition, 2022, 61, .	13.8	58
26	Sizeâ€Dependant Cellular Uptake of Dendritic Polyglycerol. Small, 2011, 7, 820-829.	10.0	56
27	Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and <i>in situ</i> encapsulation of bioactives. Polymer Chemistry, 2014, 5, 6909-6913.	3.9	56
28	Nitric Oxide Releasing Nanomaterials for Cancer Treatment: Current Status and Perspectives. Current Topics in Medicinal Chemistry, 2015, 15, 298-308.	2.1	56
29	Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale, 2017, 9, 172-182.	5.6	53
30	Hair follicles as a target structure for nanoparticles. Journal of Innovative Optical Health Sciences, 2015, 08, 1530004.	1.0	52
31	Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology, 2017, 11, 267-277.	3.0	52
32	Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. ELife, 2017, 6 , .	6.0	50
33	Engineering thermoresponsive polyether-based nanogels for temperature dependent skin penetration. Polymer Chemistry, 2015, 6, 5827-5831.	3.9	49
34	<l>A Special Issue on</l> Polymer Conjugate Based Nanotherapeutics. Journal of Biomedical Nanotechnology, 2014, 10, 1-3.	1.1	48
35	Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal, 2016, 78, 14-24.	5.4	48
36	In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. Journal of Controlled Release, 2017, 257, 118-131.	9.9	48

#	Article	IF	CITATIONS
37	Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer. Journal of Controlled Release, 2014, 194, 189-196.	9.9	46
38	Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy. Nanoscale, 2016, 8, 5852-5856.	5.6	44
39	Enhanced topical delivery of dexamethasone by \hat{l}^2 -cyclodextrin decorated thermoresponsive nanogels. Nanoscale, 2018, 10, 469-479.	5.6	44
40	Nanoscale self-assembled multivalent (SAMul) heparin binders in highly competitive, biologically relevant, aqueous media. Chemical Science, 2014, 5, 1484.	7.4	42
41	Positively Charged Thermoresponsive Nanogels for Anticancer Drug Delivery. Macromolecular Chemistry and Physics, 2014, 215, 2414-2419.	2.2	42
42	Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. Journal of Controlled Release, 2016, 243, 323-332.	9.9	42
43	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie - International Edition, 2017, 56, 11420-11425.	13.8	41
44	Crosslinked casein-based micelles as a dually responsive drug delivery system. Polymer Chemistry, 2018, 9, 3499-3510.	3.9	41
45	pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes (BODIPYs) for Photodynamic Therapy and Bioimaging. Journal of Medicinal Chemistry, 2020, 63, 1699-1708.	6.4	41
46	Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2201-2214.	3.3	36
47	Immobilization of Stimuli-Responsive Nanogels onto Honeycomb Porous Surfaces and Controlled Release of Proteins. Langmuir, 2016, 32, 1854-1862.	3.5	35
48	Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. Journal of Controlled Release, 2021, 332, 10-20.	9.9	35
49	Double-degradable responsive self-assembled multivalent arrays – temporary nanoscale recognition between dendrons and DNA. Organic and Biomolecular Chemistry, 2014, 12, 446-455.	2.8	33
50	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	5.8	32
51	Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. Nanoscale, 2015, 7, 3923-3932.	5.6	32
52	Drug delivery across intact and disrupted skin barrier: Identification of cell populations interacting with penetrated thermoresponsive nanogels. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 4-11.	4.3	32
53	Hyperbranched Polyamines for Transfection. Topics in Current Chemistry, 2010, 296, 95-129.	4.0	31
54	Dendritic polyglycerolamine as a functional antifouling coating of gold surfaces. Journal of Materials Chemistry, 2012, 22, 19488.	6.7	30

#	Article	IF	Citations
55	Dendritic polymers for smart drug delivery applications. Nanoscale, 2015, 7, 3806-3807.	5 . 6	29
56	Acid-sensitive lipidated doxorubicin prodrug entrapped in nanoemulsion impairs lung tumor metastasis in a breast cancer model. Nanomedicine, 2017, 12, 1751-1765.	3.3	29
57	Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics, 2020, 10, 91-108.	10.0	29
58	The influence of shape and charge on protein corona composition in common gold nanostructures. Materials Science and Engineering C, 2020, 117, 111270.	7.3	29
59	Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. Journal of Materials Chemistry B, 2015, 3, 4853-4864.	5.8	28
60	Interactions of organic nanoparticles with proteins in physiological conditions. Journal of Materials Chemistry B, 2017, 5, 4393-4405.	5.8	28
61	Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. European Polymer Journal, 2018, 109, 117-123.	5.4	27
62	Transferrin Decorated Thermoresponsive Nanogels as Magnetic Trap Devices for Circulating Tumor Cells. Macromolecular Rapid Communications, 2016, 37, 439-445.	3.9	26
63	Stereocomplexed PLA microspheres: Control over morphology, drug encapsulation and anticancer activity. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110544.	5.0	26
64	Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells. Nanoscale, 2015, 7, 8684-8688.	5.6	25
65	Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine, 2017, 12, 117-129.	3.3	25
66	Transglutaminase 1 Replacement Therapy Successfully Mitigates the Autosomal Recessive Congenital Ichthyosis Phenotype in Full-Thickness Skin Disease Equivalents. Journal of Investigative Dermatology, 2019, 139, 1191-1195.	0.7	24
67	Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Materials Science and Engineering C, 2019, 100, 141-151.	7.3	24
68	Rational design of dendritic thermoresponsive nanogels that undergo phase transition under endolysosomal conditions. Journal of Materials Chemistry B, 2017, 5, 866-874.	5.8	23
69	Electrochemical Study of a Dendritic Family at the Water/1,2-Dichloroethane Interface. Langmuir, 2008, 24, 6343-6350.	3.5	22
70	One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chemical Communications, 2015, 51, 5264-5267.	4.1	22
71	Near Infrared Dye Conjugated Nanogels for Combined Photodynamic and Photothermal Therapies. Macromolecular Bioscience, 2016, 16, 1432-1441.	4.1	22
72	Understanding the elusive protein corona of thermoresponsive nanogels. Nanomedicine, 2018, 13, 2657-2668.	3.3	22

#	Article	IF	Citations
73	Functionalised supports with sugar dendritic ligand. Reactive and Functional Polymers, 2007, 67, 1018-1026.	4.1	21
74	Evaluation of a new dendrimeric structure as prospective drugs carrier for intravenous administration of antichagasic active compounds. Journal of Physical Organic Chemistry, 2008, 21, 1079-1085.	1.9	21
75	Dendritic amphiphiles as additives for honeycomb-like patterned surfaces by breath figures: Role of the molecular characteristics on the pore morphology. Journal of Colloid and Interface Science, 2015, 440, 263-271.	9.4	21
76	The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Analytical and Bioanalytical Chemistry, 2019, 411, 7645-7657.	3.7	21
77	New dendronized polymers from acrylate Behera amine and their ability to produce visco-elastic structured fluids when mixed with CTAT worm-like micelles. Journal of Colloid and Interface Science, 2011, 357, 147-156.	9.4	20
78	Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 155-163.	4.3	20
79	Development of enzymatically cleavable doxorubicin conjugates with polyglycerol. Journal of Controlled Release, 2008, 132, e54-e55.	9.9	19
80	Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics, 2019, 11, 394.	4.5	18
81	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie, 2017, 129, 11578-11583.	2.0	17
82	Effect of crosslinking density on thermoresponsive nanogels: A study on the size control and the kinetics release of biomacromolecules. European Polymer Journal, 2020, 124, 109478.	5 . 4	17
83	Development of efficient macromolecular prodrugs derived from dendritic polyglycerol. Journal of Controlled Release, 2010, 148, e24-e25.	9.9	16
84	Novel chemoenzymatic methodology for the regioselective glycine loading on polyhydroxy compounds. Organic and Biomolecular Chemistry, 2010, 8, 2228.	2.8	16
85	Metallo-Polymer Chain Extension Controls the Morphology and Release Kinetics of Microparticles Composed of Terpyridine-Capped Polylactides and their Stereocomplexes. Macromolecular Rapid Communications, 2017, 38, 1600790.	3.9	16
86	Effect of Delivery Platforms Structure on the Epidermal Antigen Transport for Topical Vaccination. Biomacromolecules, 2018, 19, 4607-4616.	5 . 4	16
87	Can dermal delivery of therapeutics be improved using thermoresponsive nanogels?. Nanomedicine, 2019, 14, 2891-2895.	3.3	15
88	Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers, 2020, 12, 1380.	3.7	15
89	Structure–activity relationship study of dendritic polyglycerolamines for efficient siRNA transfection. RSC Advances, 2015, 5, 78760-78770.	3.6	14
90	Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. European Polymer Journal, 2021, 145, 110237.	5 . 4	14

#	Article	IF	CITATIONS
91	Optimizing Circulating Tumor Cells' Capture Efficiency of Magnetic Nanogels by Transferrin Decoration. Polymers, 2018, 10, 174.	4.5	13
92	A Facile, One-Pot, Surfactant-Free Nanoprecipitation Method for the Preparation of Nanogels from Polyglycerol–Drug Conjugates that Can Be Freely Assembled for Combination Therapy Applications. Polymers, 2018, 10, 398.	4.5	13
93	Modular approach for theranostic polymer conjugates with activatable fluorescence: Impact of linker design on the stimuli-induced release of doxorubicin. Journal of Controlled Release, 2018, 285, 200-211.	9.9	13
94	Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels. Nanoscale, 2020, 12, 21635-21646.	5.6	13
95	Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures. Organic and Biomolecular Chemistry, 2012, 10, 8403.	2.8	12
96	Receptor Mediated Cellular Uptake of Low Molecular Weight Dendritic Polyglycerols. Journal of Biomedical Nanotechnology, 2014, 10, 92-99.	1.1	12
97	Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage. Nanoscale, 2015, 7, 3838-3844.	5.6	12
98	Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. International Journal of Biological Macromolecules, 2020, 154, 446-455.	7.5	12
99	Design and Testing of Efficient Mucusâ€Penetrating Nanogels—Pitfalls of Preclinical Testing and Lessons Learned. Small, 2021, 17, e2007963.	10.0	12
100	One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1791.	6.1	12
101	Polyfunctional MDI oligomers through dendrimerization. European Polymer Journal, 2007, 43, 1978-1985.	5.4	11
102	Facile ultrasonication approach for the efficient synthesis of ethylene glycol-based thermoresponsive nanogels. RSC Advances, 2015, 5, 15407-15413.	3.6	11
103	Polymeric soft nanocarriers as smart drug delivery systems: State-of-the-art and future perspectives. Biotechnology Advances, 2015, 33, 1277-1278.	11.7	11
104	Semi-interpenetrated, dendritic, dual-responsive nanogels with cytochrome c corona induce controlled apoptosis in HeLa cells. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 115-122.	4.3	11
105	Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma. FASEB Journal, 2018, 32, 5835-5850.	0.5	11
106	Polyglycerol-Based Thermoresponsive Nanocapsules Induce Skin Hydration and Serve as a Skin Penetration Enhancer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30136-30144.	8.0	11
107	Protein corona formation and its influence on biomimetic magnetite nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4870-4882.	5.8	11
108	PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1169-1179.	3.3	10

#	Article	IF	Citations
109	Thermoresponsive nanogels with film-forming ability. Polymer Chemistry, 2018, 9, 1004-1011.	3.9	10
110	Temperature-Enhanced Follicular Penetration of Thermoresponsive Nanogels. Zeitschrift Fur Physikalische Chemie, 2018, 232, 805-817.	2.8	10
111	Fabrication of honeycomb films from highly functional dendritic structures: electrostatic force driven immobilization of biomolecules. Polymer Chemistry, 2016, 7, 4112-4120.	3.9	9
112	Effect of Core Nanostructure on the Thermomechanical Properties of Soft Nanoparticles. Chemistry of Materials, 2020, 32, 518-528.	6.7	9
113	Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels. Materials Science and Engineering C, 2021, 119, 111598.	7.3	9
114	Exploiting cyanine dye J-aggregates/monomer equilibrium in hydrophobic protein pockets for efficient multi-step phototherapy: an innovative concept for smart nanotheranostics. Nanoscale, 2021, 13, 8909-8921.	5.6	9
115	Bispecific Antibodies for Targeted Delivery of Dendritic Polyglycerol (dPG) Prodrug Conjugates. Current Cancer Drug Targets, 2016, 16, 639-649.	1.6	9
116	PEGylated Dendritic Polyglycerol Conjugate Delivers Doxorubicin to the Parasitophorous Vacuole in <i>Leishmania infantum</i> Infections. Macromolecular Bioscience, 2017, 17, 1700098.	4.1	8
117	Mannose-Decorated Dendritic Polyglycerol Nanocarriers Drive Antiparasitic Drugs To Leishmania infantum-Infected Macrophages. Pharmaceutics, 2020, 12, 915.	4.5	8
118	Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. Journal of Materials Chemistry B, 2021, 9, 2946-2978.	5.8	8
119	Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18511-18524.	8.0	8
120	Synthesis and Characterization of Dendronized Polymers. Macromolecular Symposia, 2007, 258, 53-62.	0.7	7
121	Formation and characterization of Langmuir and Langmuir-Blodgett films of Newkome-type dendrons in presence and absence of a therapeutic compound, for the development of surface mediated drug delivery systems. Journal of Colloid and Interface Science, 2017, 496, 243-253.	9.4	7
122	EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles. Cell Biochemistry and Biophysics, 2017, 75, 359-367.	1.8	7
123	Influence of Alkyl Chains of Modified Polysuccinimideâ€Based Polycationic Polymers on Polyplex Formation and Transfection. Macromolecular Bioscience, 2019, 19, e1900117.	4.1	7
124	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 14938-14944.	13.8	7
125	Synthesis, Self-Assembly, and Biological Activities of Pyrimidine-Based Cationic Amphiphiles. ACS Omega, 2021, 6, 103-112.	3.5	7
126	A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. , 2022, 137, 212842.		6

#	Article	IF	Citations
127	First generation newkome-type dendrimer as solubility enhancer of antitumor benzimidazole carbamate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 351-359.	1.6	5
128	How are we applying nanogel composites in biomedicine?. Nanomedicine, 2017, 12, 1627-1630.	3.3	5
129	Recent advances and future perspectives ofÂporous materials for biomedical applications. Nanomedicine, 2022, 17, 197-200.	3.3	5
130	Synthesis of amphiphilic dendrons and their interactions in aqueous solutions with cetyltrimethylammonium p-toluenesulfonate (CTAT). Journal of Colloid and Interface Science, 2009, 336, 462-469.	9.4	4
131	The Delivery Challenge of Genome Editing in Human Epithelia. Advanced Healthcare Materials, 2021, 10, e2100847.	7.6	4
132	Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution. Microscopy and Microanalysis, 2021, 27, 44-53.	0.4	4
133	Anionic Dendritic Polymers for Biomedical Applications. , 2013, , 56-72.		4
134	siRNA transfection by dendritic core–shell nanocarriers. Journal of Controlled Release, 2010, 148, e89.	9.9	2
135	Multivalent Dendritic Architectures for Theranostics. Nanostructure Science and Technology, 2012, , 315-344.	0.1	2
136	Selective Cell Isolation by Transferrin Functionalized Silane–Carbon Soot Mediated Superhydrophobic Micropatterns. Advanced Materials Interfaces, 2018, 5, 1701581.	3.7	2
137	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie, 2021, 133, 15065-15071.	2.0	2
138	Nanogel-Mediated Protein Replacement Therapy for Autosomal Recessive Congenital Ichthyosis (ARCI). , 0, , .		2
139	Editorial: Nanomedicine in Cancer Targeting and Therapy. Frontiers in Oncology, 2021, 11, 788210.	2.8	2
140	Responsive Nanogels for Anti-cancer Therapy. RSC Smart Materials, 2017, , 210-260.	0.1	2
141	Galvanic Replacement as a Synthetic Tool for the Construction of Anisotropic Magnetoplasmonic Nanocomposites with Synergistic Phototransducing and Magnetic Properties. ACS Applied Materials & Los Ap	8.0	2
142	Abstract 4391: Multi-modal nanomedicine for glioblastoma. , 2014, , .		1
143	Synthesis and anisotropic growth of glycerol-based thermoresponsive NIR plasmonic nanogels. European Polymer Journal, 2022, 175, 111342.	5.4	1
144	Synthesis and physicochemical characterization of branched poly(monomethyl itaconate). E-Polymers, 2010, 10, .	3.0	0

#	Article	IF	CITATIONS
145	248 Cell populations interacting with thermoresponsive nanocarriers: targeting of anti-inflammatory drugs to skin. Journal of Investigative Dermatology, 2016, 136, S203.	0.7	O
146	Macromol. Biosci. 10/2016. Macromolecular Bioscience, 2016, 16, 1546-1546.	4.1	0
147	Topical application of nanoparticles: prospects and safety aspects (Conference Presentation). , 2016, , .		O
148	Nanocarriers for Skin Applications: Where Do We Stand?. Angewandte Chemie, 0, , .	2.0	0
149	Abstract A132: Development of efficient macromolecular prodrugs derived from dendritic polyglycerol., 2009,,.		O
150	Abstract 5650: Targeting siRNA to tumors and their stroma as a dual anticancer and anti-angiogenic therapy. , 2012, , .		0
151	Abstract LB-104: Reverting the angiogenic switch of glioblastoma with a nanopolyplex based on the molecular fingerprint of tumor dormancy. , 2014, , .		0
152	Abstract B42: Dysregulation of key microRNAs controlling tumor-host interactions triggers escape from osteosarcoma dormancy. , 2016, , .		0