Vadim S. Kamenetsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbonates at the supergiant Olypmic Dam Cu-U-Au-Ag deposit, South Australia part 2: Sm-Nd, Lu-Hf and Sr-Pb isotope constraints on the chronology of carbonate deposition. Ore Geology Reviews, 2022, 140, 103745.	1.1	9
2	Segmental closure of the Mongol-Okhotsk Ocean: Insight from detrital geochronology in the East Transbaikalia Basin. Geoscience Frontiers, 2022, 13, 101254.	4.3	17
3	Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas. Lithos, 2022, 412-413, 106608.	0.6	5
4	High Sulfur in Primitive Arc Magmas, Its Origin and Implications. Minerals (Basel, Switzerland), 2022, 12, 37.	0.8	6
5	High-temperature water–olivine interaction and hydrogen liberation in the subarc mantle. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	3
6	The Ulandryk and related iron oxide-Cu-REE(-Au-U) prospects in the Russian Altai: A large emerging IOCG-type system in a Phanerozoic continental setting. Ore Geology Reviews, 2022, 146, 104961.	1.1	3
7	Olivine in Kimberlites: Magma Evolution from Deep Mantle to Eruption. Journal of Petrology, 2022, 63,	1.1	11
8	Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa). Lithos, 2021, 380-381, 105880.	0.6	10
9	Base metal sulphide geochemistry of southern African mantle eclogites (Roberts Victor): Implications for cratonic mafic magmatism and metallogenesis. Lithos, 2021, 382-383, 105918.	0.6	1
10	Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry. Geochimica Et Cosmochimica Acta, 2021, 295, 112-134.	1.6	17
11	Platinum mineralization and geochemistry of the Matysken zoned Ural-Alaskan type complex and related placer (Far East Russia). Ore Geology Reviews, 2021, 130, 103947.	1.1	12
12	U–Pb Dating of Apatite, Titanite and Zircon of the Kingash Mafic–Ultramafic Massif, Kan Terrane, Siberia: from Rodinia Break-up to the Reunion with the Siberian Craton. Journal of Petrology, 2021, 62,	1.1	4
13	Staged formation of the supergiant Olympic Dam uranium deposit, Australia. Geology, 2021, 49, 1312-1316.	2.0	14
14	Primitive high-K intraoceanic arc magmas of Eastern Kamchatka: Implications for Paleo-Pacific tectonics and magmatism in the Cretaceous. Earth-Science Reviews, 2021, 220, 103703.	4.0	12
15	Origin of alkali-rich volcanic and alkali-poor intrusive carbonatites from a common parental magma. Scientific Reports, 2021, 11, 17627.	1.6	11
16	Dissolution of mantle orthopyroxene in kimberlitic melts: Petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite (Siberian) Tj ETQqO	0 0 og&T /(Dve 4 lock 10 Tf
17	Global implication of mesoproterozoic (~ 1.4ÂGa) magmatism within theÂSette-Daban Range (Southeast)	Tj ETQq1 1 1.0	. 0. <u>7</u> 84314 rg
18	Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian	0.6	4

Shield: Implications for the origin and evolution of kimberlite melts. Lithos, 2021, 406-407, 106528. 18

0.6

#	Article	IF	CITATIONS
19	Noble Metals in Arc Basaltic Magmas Worldwide: A Case Study of Modern and Pre-Historic Lavas of the Tolbachik Volcano, Kamchatka. Frontiers in Earth Science, 2021, 9, .	0.8	7
20	Carbonatites: Contrasting, Complex, and Controversial. Elements, 2021, 17, 307-314.	0.5	23
21	Can primitive kimberlite melts be alkaliâ€carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. Journal of Raman Spectroscopy, 2020, 51, 1849-1867.	1.2	34
22	Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia. Earth-Science Reviews, 2020, 201, 103041.	4.0	21
23	A genetic story of olivine crystallisation in the Mark kimberlite (Canada) revealed by zoning and melt inclusions. Lithos, 2020, 358-359, 105405.	0.6	7
24	Evolution of kimberlite magmas in the crust: A case study of groundmass and mineral-hosted inclusions in the Mark kimberlite (Lac de Gras, Canada). Lithos, 2020, 372-373, 105690.	0.6	11
25	Carbonates at the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia. Part 1: Distribution, textures, associations and stable isotope (C, O) signatures. Ore Geology Reviews, 2020, 126, 103775.	1.1	4
26	Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia). Geosciences (Switzerland), 2020, 10, 278.	1.0	4
27	Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-rich Melts — Evidence from the Kimberley Kimberlites (South Africa). Journal of Petrology, 2020, 61, .	1.1	28
28	In-Situ Crystallization and Continuous Modification of Chromian Spinel in the "Sulfide-Poor Platinum-Group Metal Ores―of the Norilsk-1 Intrusion (Northern Siberia, Russia). Minerals (Basel,) Tj ETQq0 0 C	rg®0.78/Ove	erlack 10 Tf 5
29	Silicate inclusions in isoferroplatinum: Constraints on the origin of platinum mineralization in podiform chromitites. Ore Geology Reviews, 2020, 119, 103367.	1.1	12
30	Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia). Lithos, 2020, 370-371, 105657.	0.6	5
31	Hybrid Nature of the Platinum Group Element Chromite-Rich Rocks of the Norilsk 1 Intrusion: Genetic Constraints from Cr Spinel and Spinel-Hosted Multiphase Inclusions. Economic Geology, 2020, 115, 1321-1342.	1.8	14
32	Oxide-Sulfide-Melt-Bubble Interactions in Spinel-Rich Taxitic Rocks of the Norilsk-Talnakh Intrusions, Polar Siberia. Economic Geology, 2020, 115, 1305-1320.	1.8	21
33	Contact Metamorphic and Metasomatic Processes at the Kharaelakh Intrusion, Oktyabrsk Deposit, Norilsk-Talnakh Ore District: Application of LA-ICP-MS Dating of Perovskite, Apatite, Garnet, and Titanite. Economic Geology, 2020, 115, 1213-1226.	1.8	12
34	Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	6
35	Mineralogy and Origin of Aerosol From an Arc Basaltic Eruption: Case Study of Tolbachik Volcano, Kamchatka. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008802.	1.0	7
36	Multivariate Statistical Analysis of Trace Elements in Pyrite: Prediction, Bias and Artefacts in Defining Mineral Signatures. Minerals (Basel, Switzerland), 2020, 10, 61.	0.8	14

#	Article	IF	CITATIONS
37	~1760ÂMa magnetite-bearing protoliths in the Olympic Dam deposit, South Australia: Implications for ore genesis and regional metallogeny. Ore Geology Reviews, 2020, 118, 103337.	1.1	6
38	Geology of the Acropolis prospect, South Australia, constrained by high-precision CA-TIMS ages. Australian Journal of Earth Sciences, 2020, 67, 699-716.	0.4	9
39	Origin of noble-metal nuggets in sulfide-saturated arc magmas: A case study of olivine-hosted sulfide melt inclusions from the Tolbachik volcano (Kamchatka, Russia). Geology, 2020, 48, 620-624.	2.0	26
40	SPINEL-GROUP MINERALS IN PERIDOTITES OF THE GULI AND BOR-URYAKH INTRUSIONS (MEIMECHA-KOTUY) TJ I	ETQq0 0 0	rgBT /Overlo
41	Concentrically-Zoned Mafic-Ultramafic Marinkin Massif, Middle Vitim Highland, Baikal Region, Russia: Inclusions in Chrome Spinel—Key to Mineral Formation Processes. Springer Proceedings in Earth and Environmental Sciences, 2020, , 111-118.	0.2	0
42	An advanced stepwise leaching technique for derivation of initial lead isotope ratios in ancient mafic rocks: A case study of Mesoproterozoic intrusions from the Udzha paleo-rift, Siberian Craton. Chemical Geology, 2019, 528, 119253.	1.4	1
43	From magma to mush to lava: Crystal history of voluminous felsic lavas in the Gawler Range Volcanics, South Australia. Lithos, 2019, 346-347, 105148.	0.6	1
44	Highâ€ŧemperature gold opper extraction with chloride flux in lava tubes of Tolbachik volcano (Kamchatka). Terra Nova, 2019, 31, 511-517.	0.9	1
45	A Reply to the Comment by Kostrovitsky, S. and Yakovlev, D. on †Was Crustal Contamination Involved in the Formation of the Serpentine-free Udachnaya-East Kimberlite? New Insights into Parental Melts, Liquidus Assemblage and Effects of Alteration' by Abersteiner et al. (J. Petrology, 59, 1467–1492, 2018). Iournal of Petrology, 2019, 60, 1841-1847.	1.1	1
46	Shoshonitic magmatism in the Paleoproterozoic of the south-western Siberian Craton: An analogue of the modern post-collision setting. Lithos, 2019, 328-329, 88-100.	0.6	21
47	Rare Earth Element Phosphate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia: Recognizing Temporal-Spatial Controls On Ree Mineralogy in an Evolved IOCG System. Canadian Mineralogist, 2019, 57, 3-24.	0.3	15
48	Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia. Minerals Engineering, 2019, 135, 83-94.	1.8	13
49	Polymineralic inclusions in kimberlite-hosted megacrysts: Implications for kimberlite melt evolution. Lithos, 2019, 336-337, 310-325.	0.6	25
50	Comparative Geothermometry in High-Mg Magmas from the Etendeka Province and Constraints on their Mantle Source. Journal of Petrology, 2019, 60, 2509-2528.	1.1	3
51	Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	16
52	Insights into magma histories through silicate-oxide crystal clusters: Linking the Hiltaba Suite intrusive rocks to the Gawler Range Volcanics, Gawler Craton, South Australia. Precambrian Research, 2019, 321, 103-122.	1.2	3
53	Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints. Lithos, 2019, 324-325, 297-314.	0.6	43

54Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chemical
Geology, 2018, 483, 261-274.1.473

#	Article	IF	CITATIONS
55	Impact of air, laser pulse width and fluence on U–Pb dating of zircons by LA-ICPMS. Journal of Analytical Atomic Spectrometry, 2018, 33, 221-230.	1.6	84
56	Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 2018, 483, 442-462.	1.4	27
57	Significance of halogens (F, Cl) in kimberlite melts: Insights from mineralogy and melt inclusions in the Roger pipe (Ekati, Canada). Chemical Geology, 2018, 478, 148-163.	1.4	19
58	Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO2 degassing. Chemical Geology, 2018, 478, 76-88.	1.4	35
59	Reprint of Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt. Chemical Geology, 2018, 478, 112-130.	1.4	7
60	Compositional characteristics and geodynamic significance of late <scp>M</scp> iocene volcanic rocks associated with the <scp>C</scp> hah <scp>Z</scp> ard epithermal gold–silver deposit, southwest <scp>Y</scp> azd, <scp>I</scp> ran. Island Arc, 2018, 27, e12223.	0.5	11
61	Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia. Mineralogy and Petrology, 2018, 112, 145-172.	0.4	13
62	Origin of volatiles emitted by Plinian mafic eruptions of the Chikurachki volcano, Kurile arc, Russia: Trace element, boron and sulphur isotope constraints. Chemical Geology, 2018, 478, 131-147.	1.4	8
63	Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts. Chemical Geology, 2018, 478, 102-111.	1.4	38
64	Catastrophic events in the Quaternary outflow history of Lake Baikal. Earth-Science Reviews, 2018, 177, 76-113.	4.0	18
65	Immiscible sulfide melts in primitive oceanic magmas: Evidence and implications from picrite lavas (Eastern Kamchatka, Russia). American Mineralogist, 2018, 103, 886-898.	0.9	29
66	Copper-Containing Magnesioferrite in Vesicular Trachyandesite in a Lava Tube from the 2012–2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia. Minerals (Basel, Switzerland), 2018, 8, 514.	0.8	5
67	Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern) Tj ETQq1 1 0.78 2018, 8, 555.	4314 rgB1 0.8	Overlock 12
68	Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	10
69	Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: Implications for spatial compositional variability of subarc mantle and its oxidation state. Lithos, 2018, 322, 212-224.	0.6	23
70	Tectonothermal events in the Olympic IOCG Province constrained by apatite and REE-phosphate geochronology. Australian Journal of Earth Sciences, 2018, 65, 643-659.	0.4	14
71	Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles. Geofluids, 2018, 2018, 1-16.	0.3	20
72	Textural, morphological and compositional varieties of modern arc sulfides: A case study of the Tolbachik volcano, Kamchatka. Lithos, 2018, 318-319, 14-29.	0.6	8

#	Article	IF	CITATIONS
73	Was Crustal Contamination Involved in the Formation of the Serpentine-Free Udachnaya-East Kimberlite? New Insights into Parental Melts, Liquidus Assemblage and Effects of Alteration. Journal of Petrology, 2018, 59, 1467-1492.	1.1	38
74	Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc Zone (Southern Urals). Doklady Earth Sciences, 2018, 479, 463-467.	0.2	3
75	Precise geochronological constraints on the origin, setting and incorporation of ca. 1.59â€ ⁻ Ga surficial facies into the Olympic Dam Breccia Complex, South Australia. Precambrian Research, 2018, 315, 162-178.	1.2	35
76	lsotopic Disequilibrium in Migmatitic Hornfels of the Gennargentu Igneous Complex (Sardinia, Italy) Records the Formation of Low 87Sr/86Sr Melts from a Mica-Rich Source. Journal of Petrology, 2018, 59, 1309-1328.	1.1	7
77	Effects of hydrothermal alteration on mafic lithologies at the Olympic Dam Cu-U-Au-Ag deposit. Precambrian Research, 2017, 292, 305-322.	1.2	5
78	Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nature Geoscience, 2017, 10, 222-228.	5.4	139
79	A triple S-shaped compositional profile in a Karoo dolerite sill—Evidence of concurrent multiple fractionation processes. Geology, 2017, 45, 603-606.	2.0	4
80	Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas. Geochimica Et Cosmochimica Acta, 2017, 216, 393-416.	1.6	27
81	Geochronological, geochemical and Pb isotopic compositions of Tasmanian granites (southeast) Tj ETQq1 1 0.784 Research, 2017, 46, 124-140.	314 rgBT 3.0	/Overlock 17
82	Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia. Mineralium Deposita, 2017, 52, 863-881.	1.7	11
83	Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano,) Tj ETQq1 1 0.7843	14 rgBT /0	Oyerlock I
84	Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt. Chemical Geology, 2017, 471, 92-110.	1.4	35
85	Linking Olympic Dam and the Cariewerloo Basin: Was a sedimentary basin involved in formation of the world's largest uranium deposit?. Precambrian Research, 2017, 300, 168-180.	1.2	21
86	Mantle melting versus mantle metasomatism – "The chicken or the egg―dilemma. Chemical Geology, 2017, 455, 120-130.	1.4	30
87	Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chemical Geology, 2017, 455, 331-341.	1.4	43
88	Multiple mantle sources of continental magmatism: Insights from "high-Ti―picrites of Karoo and other large igneous provinces. Chemical Geology, 2017, 455, 22-31.	1.4	41
89	Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geology Reviews, 2017, 80, 838-859.	1.1	44
90	Timing and genesis of the Karoo-Ferrar large igneous province: New high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse. Chemical Geology, 2017, 455, 32-43.	1.4	73

#	Article	IF	CITATIONS
91	The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 2017, 455, 342-356.	1.4	78
92	Different types of liquid immiscibility in carbonatite magmas: A case study of the Oldoinyo Lengai 1993 lava and melt inclusions. Chemical Geology, 2017, 455, 376-384.	1.4	22
93	First direct evidence for natural occurrence of colloidal silica in chalcedony-hosted vacuoles and implications for ore-forming processes. Geology, 2017, 45, 71-74.	2.0	11
94	Hydrosilicate liquids in the system rare-metal granite–Na2O–SiO2–H2O as accumulators of ore components at high pressure and temperature. Petrology, 2017, 25, 625-635.	0.2	12
95	Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals (Basel, Switzerland), 2017, 7, 202.	0.8	26
96	Southwestern Africa on the burner: Pleistocene carbonatite volcanism linked to deep mantle upwelling in Angola. Geology, 2017, 45, 971-974.	2.0	17
97	EARLY, DEEP MAGNETITE-FLUORAPATITE MINERALIZATION AT THE OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA*. Economic Geology, 2017, 112, 1531-1542.	1.8	46
98	Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. Journal of Analytical Atomic Spectrometry, 2016, 31, 1206-1215.	1.6	71
99	Comment on: "The ascent of kimberlite: Insights from olivine―by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119–131]. Earth and Planetary Science Letters, 2016, 440, 187-189.	1.8	11
100	Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos, 2016, 260, 429-442.	0.6	47
101	In-situ assimilation of mantle minerals by kimberlitic magmas — Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos, 2016, 256-257, 182-196.	0.6	57
102	A story of olivine from the McIvor Hill complex (Tasmania, Australia): Clues to the origin of the Avebury metasomatic Ni sulfide deposit. American Mineralogist, 2016, 101, 1321-1331.	0.9	14
103	Relation between cathodoluminescence and trace-element distribution of magmatic topaz from the Ary-Bulak massif, Russia. Mineralogical Magazine, 2016, 80, 881-899.	0.6	9
104	Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O. Earth and Planetary Science Letters, 2016, 454, 154-165.	1.8	19
105	Melanesian back-arc basin and arc development: Constraints from the eastern Coral Sea. Gondwana Research, 2016, 39, 77-95.	3.0	34
106	Carbonatite magmatism of the southern Siberian Craton 1 Ga ago: Evidence for the beginning of breakup of Laurasia in the early Neoproterozoic. Doklady Earth Sciences, 2016, 471, 1140-1143.	0.2	1
107	The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin. Gondwana Research, 2016, 38, 351-369.	3.0	13
108	Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: Examples at the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit and other localities. Precambrian Research, 2016, 281, 185-199.	1.2	37

#	Article	IF	CITATIONS
109	New carbonatite complex in the western Baikal area, southern Siberian craton: Mineralogy, age, geochemistry, and petrogenesis. Petrology, 2016, 24, 271-302.	0.2	12
110	Cold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka. Earth and Planetary Science Letters, 2016, 437, 35-46.	1.8	23
111	Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	15
112	Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochimica Et Cosmochimica Acta, 2016, 176, 44-80.	1.6	116
113	Characteristics, origin and significance of Mesoproterozoic bedded clastic facies at the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Precambrian Research, 2016, 276, 85-100.	1.2	21
114	Uranium and Sm isotope studies of the supergiant Olympic Dam Cu–Au–U–Ag deposit, South Australia. Geochimica Et Cosmochimica Acta, 2016, 180, 15-32.	1.6	35
115	Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): Implications for mantle source, melting process and plumbing system. Geochimica Et Cosmochimica Acta, 2016, 185, 112-128.	1.6	16
116	Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos, 2016, 240-243, 189-201.	0.6	111
117	Multi-stage enrichment processes for large gold-bearing ore deposits. Ore Geology Reviews, 2016, 76, 268-279.	1.1	57
118	U–Pb zircon geochronology and geochemistry from NE Vietnam: A â€~tectonically disputed' territory between the Indochina and South China blocks. Gondwana Research, 2016, 34, 254-273.	3.0	88
119	Chlorine in mantle-derived carbonatite melts revealed by halite in the StHonoré intrusion (Québec,) Tj ETQ	q110.784 2.0	4314 rgBT /O
120	Carbonatitic lavas in Catanda (Kwanza Sul, Angola): Mineralogical and geochemical constraints on the parental melt. Lithos, 2015, 232, 1-11.	0.6	17
121	Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nature Communications, 2015, 6, 6837.	5.8	78
122	Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochimica Et Cosmochimica Acta, 2015, 158, 48-56.	1.6	92
123	Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. American Mineralogist, 2015, 100, 787-794.	0.9	128
124	Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambrian Research, 2015, 271, 160-172.	1.2	51
125	Crystallization of platinum-group minerals from silicate melts: Evidence from Cr-spinel–hosted inclusions in volcanic rocks. Geology, 2015, 43, 903-906.	2.0	63
126	The evolution of authigenic Zn–Pb–Fe-bearing phases in the Grieves Siding peat, western Tasmania. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	10

#	Article	IF	CITATIONS
127	Palaeoarchaean felsic magmatism: A melt inclusion study of 3.45 Ga old rhyolites from the Barberton Greenstone Belt, South Africa. Chemical Geology, 2015, 414, 69-83.	1.4	9
128	Quaternary high-Mg ultrapotassic rocks from the Qal'eh Hasan Ali maars, southeastern Iran: petrogenesis and geodynamic implications. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	16
129	Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic–hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geology of Ore Deposits, 2015, 57, 352-380.	0.2	33
130	Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa. Lithos, 2015, 212-215, 443-452.	0.6	24
131	Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist, 2014, 99, 633-644.	0.9	76
132	Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chemical Geology, 2014, 383, 76-85.	1.4	42
133	LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters, 2014, 401, 132-147.	1.8	41
134	The Central Ailaoshan ophiolite and modern analogs. Gondwana Research, 2014, 26, 75-88.	3.0	109
135	Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology, 2014, 55, 831-858.	1.1	86
136	Adakites in the Truong Son and Loei fold belts, Thailand and Laos: Genesis and implications for geodynamics and metallogeny. Gondwana Research, 2014, 26, 165-184.	3.0	126
137	The key role of mica during igneous concentration of tantalum. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	211
138	Mineralization, U-Pb Geochronology, and Stable Isotope Geochemistry of the Lower Main Zone of the Lorraine Deposit, North-Central British Columbia: A Replacement-Style Alkalic Cu-Au Porphyry. Economic Geology, 2014, 109, 979-1004.	1.8	19
139	Formation and properties of hydrosilicate liquids in the systems Na2O-Al2O3-SiO2-H2O and granite-Na2O-SiO2-H2O at 600°C and 1.5 kbar. Petrology, 2014, 22, 293-309.	0.2	13
140	Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 2014, 139, 145-167.	4.0	126
141	Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review. Chemical Geology, 2014, 374-375, 61-83.	1.4	81
142	Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America. Precambrian Research, 2014, 250, 50-67.	1.2	77
143	Crystallisation of magmatic topaz and implications for Nb–Ta–W mineralisation in F-rich silicic melts — The Ary-Bulak ongonite massif. Lithos, 2014, 202-203, 317-330	0.6	21
144	Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth and Planetary Science Letters, 2014, 400, 165-176.	1.8	52

#	Article	IF	CITATIONS
145	Determination of Trace Elements in Quartz by Combined EPMA and CL Microspectrometry. Microscopy and Microanalysis, 2014, 20, 718-719.	0.2	2
146	Diversity of primary CL textures in quartz from porphyry environments: implication for origin of quartz eyes. Contributions To Mineralogy and Petrology, 2013, 166, 1253-1268.	1.2	20
147	Geochemical evolution of Indian Ocean basaltic magmatism. Geochemistry International, 2013, 51, 599-622.	0.2	5
148	The Behavior of Metals (Pb, Zn, As, Mo, Cu) During Crystallization and Degassing of Rhyolites from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand. Journal of Petrology, 2013, 54, 1641-1659.	1.1	24
149	Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chemical Geology, 2013, 353, 96-111.	1.4	72
150	Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland: Evidence for coexistence and mixing of komatiitic and picritic magmas. Chemical Geology, 2013, 343, 25-37.	1.4	14
151	Melting and Phase Relations of Carbonated Eclogite at 9-21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 2013, 54, 1555-1583.	1.1	127
152	The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nature Communications, 2013, 4, 2921.	5.8	36
153	Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nature Communications, 2013, 4, 2687.	5.8	58
154	Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chemical Geology, 2013, 353, 4-18.	1.4	77
155	Trace-element partitioning in perovskite: Implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chemical Geology, 2013, 353, 112-131.	1.4	58
156	Cathodoluminescence properties of quartz eyes from porphyry-type deposits: Implications for the origin of quartz. American Mineralogist, 2013, 98, 98-109.	0.9	31
157	Mantle oddities: A sulphate fluid preserved in a MARID xenolith from the Bultfontein kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 2013, 376, 74-86.	1.8	31
158	Noble metals potential of sulfide-saturated melts from the subcontinental lithosphere. Geology, 2013, 41, 575-578.	2.0	20
159	Quantitative mapping of the oxidative effects of mantle metasomatism. Geology, 2013, 41, 683-686.	2.0	20
160	Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology, 2013, 41, 883-886.	2.0	38
161	Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S–Cl-rich C–O–H fluids. Contributions To Mineralogy and Petrology, 2013, 165, 155-171.	1.2	26
162	Magma chamber–scale liquid immiscibility in the Siberian Traps represented by melt pools in native iron. Geology, 2013, 41, 1091-1094.	2.0	47

#	Article	IF	CITATIONS
163	Tracking halogens through the subduction cycle. Geology, 2012, 40, 1075-1078.	2.0	56
164	Picrites from the Emeishan Large Igneous Province, SW China: a Compositional Continuum in Primitive Magmas and their Respective Mantle Sources. Journal of Petrology, 2012, 53, 2095-2113.	1.1	140
165	An Experimental Study of Carbonated Eclogite at 3{middle dot}5-5{middle dot}5 GPa–Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. Journal of Petrology, 2012, 53, 727-759.	1.1	131
166	The fluorine link between a supergiant ore deposit and a silicic large igneous province: REPLY. Geology, 2012, 40, e276-e276.	2.0	3
167	Trace element geochemistry of nyerereite and gregoryite phenocrysts from natrocarbonatite lava, Oldoinyo Lengai, Tanzania: Implications for magma mixing. Lithos, 2012, 152, 56-65.	0.6	12
168	A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology, 2012, 53, 2411-2440.	1.1	100
169	Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia. Precambrian Research, 2012, 208-211, 124-144.	1.2	39
170	Oxidation state of subarc mantle. Geology, 2012, 40, 783-786.	2.0	135
171	Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology, 2012, 40, 967-970.	2.0	88
172	Systematics of metals, metalloids, and volatiles in MORB melts: Effects of partial melting, crystal fractionation and degassing (a case study of Macquarie Island glasses). Chemical Geology, 2012, 302-303, 76-86.	1.4	45
173	Hydrogen and oxygen isotope behaviors during variable degrees of upper mantle melting: Example from the basaltic glasses from Macquarie Island. Chemical Geology, 2012, 310-311, 126-136.	1.4	53
174	Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica Et Cosmochimica Acta, 2012, 79, 20-40.	1.6	177
175	Halogen systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: A Macquarie Island case study. Geochimica Et Cosmochimica Acta, 2012, 81, 82-93.	1.6	83
176	Silicate–natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: Melt inclusion study. Lithos, 2012, 152, 23-39.	0.6	45
177	Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery?. Lithos, 2012, 152, 173-186.	0.6	92
178	Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran. Mineralium Deposita, 2012, 47, 425-440.	1.7	24
179	An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe3+/â~Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos, 2012, 140-141, 142-151.	0.6	98
180	Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P. Petrology, 2012, 20, 271-285.	0.2	36

#	Article	IF	CITATIONS
181	Geology and Mineralogical Zonation of the Olympic Dam Iron Oxide Cu-U-Au-Ag Deposit, South Australia. , 2012, , .		45
182	Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: Was a sedimentary basin involved?. Geology, 2011, 39, 795-798.	2.0	51
183	In situ location and Uâ€Pb dating of small zircon grains in igneous rocks using laser ablation–inductively coupled plasma–quadrupole mass spectrometry. Geochemistry, Geophysics, Geosystems, 2011, 12, .	1.0	37
184	Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 2011, 281, 253-269.	1.4	127
185	Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin. Earth and Planetary Science Letters, 2011, 312, 201-212.	1.8	26
186	Links between Carbonatite and Kimberlite Melts in Chloride–Carbonate–Silicate Systems: Experiments and Application to Natural Assemblages. Journal of Petrology, 2011, 52, 1307-1331.	1.1	40
187	Degassing of the H2O-rich rhyolites of the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand. Geology, 2011, 39, 311-314.	2.0	53
188	Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 2011, 497, 85-104.	0.9	262
189	First insights on the metallogenic signature of magmatic fluids exsolved from the active magma chamber of Vesuvius (AD 79 "Pompei―eruption). Journal of Volcanology and Geothermal Research, 2011, 200, 223-233.	0.8	14
190	Magma chamber dynamics in a silicic LIP revealed by quartz: The Mesoproterozoic Gawler Range Volcanics. Lithos, 2011, 126, 68-83.	0.6	25
191	Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 2011, 46, 541-584.	1.7	219
192	A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 82-87.	2.0	40
193	The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 2011, 39, 1003-1006.	2.0	78
194	The fate of subducted oceanic crust: a mineral segregation model. International Geology Review, 2011, 53, 879-893.	1.1	18
195	Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS. Mineralogy and Petrology, 2010, 100, 95-103.	0.4	27
196	Primitive magmas in the Emeishan Large Igneous Province, southwestern China and northern Vietnam. Lithos, 2010, 119, 75-90.	0.6	89
197	Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids, 2010, 10, 293-311.	0.3	34
198	Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 2010, 38, 1003-1006.	2.0	37

#	Article	IF	CITATIONS
199	The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 2010, 273, 314-325.	1.4	107
200	How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 2009, 112, 334-346.	0.6	120
201	Can pyroxenes be liquidus minerals in the kimberlite magma?. Lithos, 2009, 112, 213-222.	0.6	71
202	Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth and Planetary Science Letters, 2009, 285, 96-104.	1.8	70
203	The speciation of copper in natural fluid inclusions at temperatures up to 700°C. Chemical Geology, 2009, 259, 2-7.	1.4	23
204	Inclusions of silicate and sulfate melts in chrome diposide from the Inagli deposit, Yakutia, Russia. Geochemistry International, 2008, 46, 554-564.	0.2	30
205	Limited influence of subducted continental material on mineralogy and elemental geochemistry of primitive magmas from Indonesia–Australia collision zone. Lithos, 2008, 105, 73-84.	0.6	4
206	POTASSIUM SULFIDES IN KIMBERLITE-HOSTED CHLORIDE-"NYEREREITE" AND CHLORIDE CLASTS OF UDACHNAYA-EAST PIPE, YAKUTIA, RUSSIA. Canadian Mineralogist, 2008, 46, 1079-1095.	0.3	28
207	Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica Et Cosmochimica Acta, 2008, 72, 2377-2391.	1.6	151
208	Constancy of Nb/U in the mantle revisited. Geochimica Et Cosmochimica Acta, 2008, 72, 3542-3549.	1.6	90
209	Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus. Chemical Geology, 2008, 248, 195-212.	1.4	30
210	Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. Journal of Petrology, 2008, 49, 823-839.	1.1	205
211	Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology, 2007, 35, 255.	2.0	76
212	Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. European Journal of Mineralogy, 2007, 19, 51-63.	0.4	50
213	Primary aqueous fluids in rhyolitic magmas: Melt inclusion evidence for pre- and post-trapping exsolution. Chemical Geology, 2007, 237, 372-383.	1.4	39
214	Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geology, 2007, 237, 384-400.	1.4	88
215	The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): Mineral and melt inclusion evidence. Chemical Geology, 2007, 240, 260-279.	1.4	40
216	Chlorine in submarine volcanic glasses from the eastern manus basin. Geochimica Et Cosmochimica Acta, 2007, 71, 1542-1552.	1.6	96

#	Article	IF	CITATIONS
217	Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: A clue to physical properties of kimberlite magmas?. Geophysical Research Letters, 2007, 34, .	1.5	58
218	Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature, 2007, 446, 1062-1065.	13.7	166
219	Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature, 2007, 447, 303-306.	13.7	117
220	Metal saturation in the upper mantle. Nature, 2007, 449, 456-458.	13.7	248
221	Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. Journal of Volcanology and Geothermal Research, 2007, 164, 76-94.	0.8	19
222	Rasvumite from the Udachnaya-East Pipe: The first finding in kimberlites. Doklady Earth Sciences, 2007, 415, 929-934.	0.2	6
223	Cryptic crustal contamination of MORB primitive melts recorded in olivine-hosted glass and mineral inclusions. Contributions To Mineralogy and Petrology, 2007, 153, 465-481.	1.2	34
224	The amount of recycled crust in sources of mantle-derived melts. Science, 2007, 316, 412-7.	6.0	822
225	The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 2007, 316, 412-417.	6.0	470
226	Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology, 2006, 34, 85.	2.0	92
227	Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 2006, 233, 346-357.	1.4	85
228	Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: Alternative approach to the evolution of kimberlite magmas. Geochemistry International, 2006, 44, 935-940.	0.2	25
229	Silicate and salt melts in the genesis of the industrial'noe tin deposit: Evidence from inclusions in minerals. Geochemistry International, 2006, 44, 1181-1190.	0.2	12
230	Coexisting High- and Low-Calcium Melts Identified by Mineral and Melt Inclusion Studies of a Subduction-Influenced Syn-collisional Magma from South Sulawesi, Indonesia. Journal of Petrology, 2006, 47, 2433-2462.	1.1	26
231	Laser Raman spectroscopic measurements of water in unexposed glass inclusions. American Mineralogist, 2006, 91, 467-470.	0.9	41
232	Crustal Evolution of Island-Arc Ultramafic Magma: Galmoenan Pyroxenite–Dunite Plutonic Complex, Koryak Highland (Far East Russia). Journal of Petrology, 2005, 46, 1345-1366.	1.1	85
233	Magmatic Precursors of Hydrothermal Fluids at the Rio Blanco Cu-Mo Deposit, Chile: Links to Silicate Magmas and Metal Transport. Economic Geology, 2005, 100, 963-978.	1.8	24
234	Metals in quartz-hosted melt inclusions: Natural facts and experimental artifacts. American Mineralogist, 2005, 90, 1674-1678.	0.9	34

#	Article	IF	CITATIONS
235	Major element and primary sulfur concentrations in Apollo 12 mare basalts: The view from melt inclusions. Meteoritics and Planetary Science, 2005, 40, 679-693.	0.7	30
236	Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology, 2005, 33, 549.	2.0	161
237	Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology, 2004, 32, 845.	2.0	229
238	Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431, 975-978.	13.7	293
239	Volatile Phase Separation in Silicic Magmas at Bajo de la Alumbrera Porphyry Cuâ€Au Deposit, NW Argentina. Resource Geology, 2004, 54, 341-356.	0.3	69
240	Origins of compositional heterogeneity in olivine-hosted melt inclusions from the Baffin Island picrites. Contributions To Mineralogy and Petrology, 2004, 148, 426-442.	1.2	40
241	Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chemical Geology, 2004, 210, 73-90.	1.4	72
242	The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions. Earth and Planetary Science Letters, 2004, 222, 101-114.	1.8	75
243	Mafic volcanic rocks on King Island, Tasmania: evidence for 579Ma break-up in east Gondwana. Precambrian Research, 2004, 135, 177-191.	1.2	56
244	Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 2003, 119, 255-274.	0.8	32
245	Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature, 2003, 422, 294-297.	13.7	131
246	Magmatic inclusions in the search for natural silicate-salt melt immiscibility: Methodology and examples. Developments in Volcanology, 2003, , 65-82.	0.5	13
247	Cr-spinel supply in the Brkini, Istrian and Krk Island flysch basins (Slovenia, Italy and Croatia). Geological Magazine, 2003, 140, 335-342.	0.9	25
248	Melt Inclusions in Veins: Linking Magmas and Porphyry Cu Deposits. Science, 2003, 302, 2109-2111.	6.0	137
249	Mantle-melt Evolution (Dynamic Source) in the Origin of a Single MORB Suite: a Perspective from Magnesian Glasses of Macquarie Island. Journal of Petrology, 2002, 43, 1909-1922.	1.1	46
250	Extreme chemical heterogeneity of granite-derived hydrothermal fluids: An example from inclusions in a single crystal of miarolitic quartz. Geology, 2002, 30, 459.	2.0	55
251	Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics. Chemical Geology, 2002, 183, 143-168.	1.4	61
252	Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chemical Geology, 2002, 183, 287-303.	1.4	86

#	Article	IF	CITATIONS
253	Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids?. Chemical Geology, 2002, 183, 349-364.	1.4	54
254	The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland. Journal of Petrology, 2001, 42, 855-876.	1.1	130
255	Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 2001, 29, 243.	2.0	80
256	IMMISCIBILITY AND CONTINUOUS FELSIC MELT-FLUID EVOLUTION WITHIN THE RIO BLANCO PORPHYRY SYSTEM, CHILE: EVIDENCE FROM INCLUSIONS IN MAGMATIC QUARTZ. Economic Geology, 2001, 96, 1921-1929.	1.8	32
257	Parental basaltic melts and fluids in eastern Manus backarc Basin: implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 2001, 184, 685-702.	1.8	95
258	Factors Controlling Chemistry of Magmatic Spinel: an Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 2001, 42, 655-671.	1.1	848
259	Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius. Geology, 2001, 29, 1043.	2.0	62
260	High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos, 2001, 59, 153-170.	0.6	81
261	IMMISCIBILITY AND CONTINUOUS FELSIC MELT-FLUID EVOLUTION WITHIN THE RIO BLANCO PORPHYRY SYSTEM, CHILE: EVIDENCE FROM INCLUSIONS IN MAGMATIC QUARTZ. Economic Geology, 2001, 96, 1921-1929.	1.8	4
262	Origin of high-Si dacite from rhyolitic melt: evidence from melt inclusions in mingled lavas of the 1.6 Ga Gawler Range Volcanics, South Australia. Mineralogy and Petrology, 2000, 69, 183-195.	0.4	15
263	Melt inclusions in detrital spinel from the SE Alps (Italy-Slovenia): a new approach to provenance studies of sedimentary basins. Contributions To Mineralogy and Petrology, 2000, 139, 748-758.	1.2	84
264	Enriched End-member of Primitive MORB Melts: Petrology and Geochemistry of Glasses from Macquarie Island (SW Pacific). Journal of Petrology, 2000, 41, 411-430.	1.1	95
265	Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: A melt-inclusion record of the initial ore-forming process. Geology, 1999, 27, 691.	2.0	65
266	In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth and Planetary Science Letters, 1999, 172, 97-109.	1.8	71
267	Evolution of magmatic fluids at the Banska Stiavnica precious and base metal deposit, Slovakia; evidence from melt and fluid inclusions. Economic Geology, 1999, 94, 949-955.	1.8	7
268	Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt–rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth and Planetary Science Letters, 1998, 160, 115-132.	1.8	113
269	Melt–peridotite reaction recorded in the chemistry of spinel and melt inclusions in basalt from 43°N, Mid-Atlantic Ridge. Earth and Planetary Science Letters, 1998, 164, 345-352.	1.8	24
270	Carbonatite Metasomatism in the Southeastern Australian Lithosphere. Journal of Petrology, 1998, 39, 1917-1930.	1.1	370

#	Article	IF	CITATIONS
271	Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth and Planetary Science Letters, 1997, 148, 433-446.	1.8	96
272	Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth and Planetary Science Letters, 1997, 151, 205-223.	1.8	122
273	Coexistence of two distinct mantle sources during formation of ophiolites: a case study of primitive pillow-lavas from the lowest part of the volcanic section of the Troodos Ophiolite, Cyprus. Contributions To Mineralogy and Petrology, 1997, 128, 287-301.	1.2	56
274	Primitive magmatism of Mt. Etna: insights from mineralogy and melt inclusions. Earth and Planetary Science Letters, 1996, 142, 553-572.	1.8	88
275	Methodology for the study of melt inclusions in Cr-spinel, and implications for parental melts of MORB from FAMOUS area. Earth and Planetary Science Letters, 1996, 142, 479-486.	1.8	69
276	Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics, 1996, 15, 67-83.	1.3	101
277	Al-spinels in primitive arc volcanics. Mineralogy and Petrology, 1995, 53, 1-26.	0.4	27
278	Potassic primary melts of vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contributions To Mineralogy and Petrology, 1995, 120, 186-196.	1.2	60
279	Petrology and Geochemistry of Cretaceous Ultramafic Volcanics from Eastern Kamchatka. Journal of Petrology, 1995, 36, 637-662.	1.1	77
280	Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contributions To Mineralogy and Petrology, 1995, 120, 186-196.	1.2	3
281	Primitive island arc and oceanic lavas from the hunter ridge-hunter fracture zone. Evidence from glass, olivine and spinel compositions. Mineralogy and Petrology, 1992, 47, 149-169.	0.4	42