Habib Safigholi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370491/publications.pdf

Version: 2024-02-01

840776 888059 45 302 11 17 citations h-index g-index papers 45 45 45 243 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Update of the CLRP eye plaque brachytherapy database for photonâ€emitting sources. Medical Physics, 2021, 48, 3373-3283.	3.0	2
2	Electronic intracavitary brachytherapy quality management based on risk analysis: The report of AAPM TG 182. Medical Physics, 2020, 47, e65-e91.	3.0	5
3	Update of the CLRP TGâ€43 parameter database for lowâ€energy brachytherapy sources. Medical Physics, 2020, 47, 4656-4669.	3.0	21
4	Doseâ€rate considerations for the INTRABEAM electronic brachytherapy system: Report from the American Association of Physicists in Medicine task group no. 292. Medical Physics, 2020, 47, e913-e919.	3.0	8
5	Quantitative CT assessment of a novel direction-modulated brachytherapy tandem applicator. Brachytherapy, 2018, 17, 465-475.	0.5	16
6	MRI-based automated detection of implanted low dose rate (LDR) brachytherapy seeds using quantitative susceptibility mapping (QSM) and unsupervised machine learning (ML). Radiotherapy and Oncology, 2018, 129, 540-547.	0.6	24
7	Modeling of the direction modulated brachytherapy tandem applicator using the Oncentra Brachy advanced collapsed cone engine. Brachytherapy, 2018, 17, 1030-1036.	0.5	9
8	Direction Modulated Brachytherapy (dmbt) Tandem Applicator with Various Shields for Cervical Cancer Treatment. Brachytherapy, 2018, 17, S66.	0.5	0
9	Modeling of The Direction Modulated Brachytherapy (dmbt) Tandem Applicator in a Commercial Oncentra Brachy Tps Using The Advanced Collapse Cone Engine (ace) Algorithm. Brachytherapy, 2018, 17, S106-S107.	0.5	O
10	Calculation of water equivalent ratios for various materials at proton energies ranging 10–500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes. Physics in Medicine and Biology, 2018, 63, 155010.	3.0	5
11	MRI-Based Post-Implant Dosimetry of Prostate Brachytherapy Seeds. Brachytherapy, 2018, 17, S73-S74.	0.5	1
12	Macroscopic and Microscopic Dose Enhancement Factor (def) for Tumor Diffusion with Gold Nanoparticles (gnps) Using Monte Carlo Simulations: 103 Pd, 125 I, and Electronic Brachytherapy (ebt) Sources. Brachytherapy, 2018, 17, S32-S33.	0.5	0
13	Dynamic-Direction Modulated Brachytherapy (d-dmbt) Tandem Applicator with 169-Yb HDR Source for Cervical Cancer Brachytherapy. Brachytherapy, 2018, 17, S67.	0.5	O
14	Direction modulated brachytherapy (<scp>DMBT</scp>) tandem applicator for cervical cancer treatment: Choosing the optimal shielding material. Medical Physics, 2018, 45, 3524-3533.	3.0	14
15	Polarity and ion recombination corrections in continuous and pulsed beams for ionization chambers with high Z chamber walls. Physica Medica, 2017, 35, 102-109.	0.7	4
16	Comparison of ¹⁹² Ir, ¹⁶⁹ Yb, and ⁶⁰ Co highâ€dose rate brachytherapy sources for skin cancer treatment. Medical Physics, 2017, 44, 4426-4436.	3.0	30
17	Direction modulated brachytherapy (DMBT) for treatment of cervical cancer: A planning study with ¹⁹² Ir, ⁶⁰ Co, and ¹⁶⁹ Yb HDR sources. Medical Physics, 2017, 44, 6538-6547.	3.0	29
18	Integrating Direction Modulated Brachytherapy (DMBT) Tandem Applicator into a Brachytherapy TPS. Brachytherapy, 2017, 16, S20.	0.5	0

#	Article	IF	Citations
19	Sensitivity of clinically relevant dosimetric parameters to contouring uncertainty in postimplant dosimetry of low-dose-rate prostate permanent seed brachytherapy. Brachytherapy, 2016, 15, 774-779.	0.5	8
20	Direction Modulation Brachytherapy (DMBT) Tandem Generated Plan Quality with Ir-192, Co-60, and Yb-169 Sources for Cervical Cancer Treatment. Brachytherapy, 2016, 15, S106-S107.	0.5	1
21	The Feasibility of MR-Based Detection of Seeds in Presence of Calcifications for LDR Prostate Post-Implant Dosimetry Using Clinical Sequences. Brachytherapy, 2016, 15, S173-S174.	0.5	0
22	A Modified TG-43 Dose Calculation Formalism for Direction Modulation Brachytherapy (DMBT) Tandem Applicator. Brachytherapy, 2016, 15, S32-S33.	0.5	0
23	Quantitative MRI assessment of a novel direction modulated brachytherapy tandem applicator for cervical cancer at 1.5T. Radiotherapy and Oncology, 2016, 120, 500-506.	0.6	23
24	Direction Modulated Brachytherapy for Treatment of Cervical Cancer. II: Comparative Planning Study With Intracavitary and Intracavitary–Interstitial Techniques. International Journal of Radiation Oncology Biology Physics, 2016, 96, 440-448.	0.8	35
25	Direction Modulated Brachytherapy (DMBT) Tandem Applicator: Evaluation of Various Shielding Materials for Use with Ir-192 Source for Cervical Cancer Treatment. Brachytherapy, 2016, 15, S91-S92.	0.5	2
26	Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes. Journal of Advanced Research, 2016, 7, 225-232.	9.5	2
27	SU-F-T-30: Comprehensive Dosimetric Characterization of the Novel Direction Modulation Brachytherapy (DMBT) Tandem Applicator Using Monte Carlo Simulations. Medical Physics, 2016, 43, 3468-3468.	3.0	1
28	SU-G-201-11: Exploring the Upper Limits of Dose Sculpting Capacity of the Novel Direction Modulated Brachytherapy (DMBT) Tandem Applicator. Medical Physics, 2016, 43, 3625-3625.	3.0	1
29	WE-DE-201-03: Combined Use of 192Ir, 60Co, and 169Yb Sources with the Novel Direction Modulated Brachytherapy Tandem Applicator for High Dose Rate Brachytherapy Planning of Cervical Cancer. Medical Physics, 2016, 43, 3808-3809.	3.0	1
30	SU-F-J-157: Effect of Contouring Uncertainty in Post Implant Dosimetry of Low-Dose-Rate Prostate Permanent Seed Brachytherapy. Medical Physics, 2016, 43, 3443-3444.	3.0	0
31	SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm. Medical Physics, 2016, 43, 3464-3465.	3.0	0
32	SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator. Medical Physics, 2016, 43, 3467-3468.	3.0	0
33	SU-F-I-19: MRI Positive Contrast Visualization of Prostate Brachytherapy Seeds Using An Integrated Laplacian-Based Phase Processing. Medical Physics, 2016, 43, 3391-3391.	3.0	0
34	SU-G-leP1-09: MRI Evaluation of a Direction-Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer On 3T. Medical Physics, 2016, 43, 3646-3646.	3.0	1
35	Optimum radiation source for radiation therapy of skin cancer. Journal of Applied Clinical Medical Physics, 2015, 16, 219-227.	1.9	21
36	Influences of spherical phantom heterogeneities on dosimetric charactristics of miniature electronic brachytherapy X-ray sources: Monte Carlo study. Applied Radiation and Isotopes, 2015, 95, 108-113.	1.5	9

3

#	Article	IF	CITATIONS
37	SUâ€Eâ€Tâ€208: Comparison of MR Image Quality of Various Brachytherapy Applicators for Cervical Cancer. Medical Physics, 2015, 42, 3380-3380.	3.0	0
38	A Novel Algorithm Accounting for Inter-Seed Attenuation Effect in Brachytherapy Treatment Planning Systems by Monte Carlo and Artificial Neural Networks. Brachytherapy, 2014, 13, S27-S28.	0.5	0
39	An analytical model to determine interseed attenuation effect in lowâ€doseâ€rate brachytherapy. Journal of Applied Clinical Medical Physics, 2013, 14, 150-163.	1.9	11
40	SU-E-T-525: Developing a GYN Cs-Selectron Brachytherapy Treatment Planning Software Accounting for Inter-Source, Applicator and Heterogeneity Effects. Medical Physics, 2013, 40, 326-326.	3.0	0
41	SU-E-T-527: A Fast Novel Analytical Model Accounting for Interseed Attenuation Effect in Low Energy Brachytherapy Sources. Medical Physics, 2013, 40, 327-327.	3.0	O
42	SU-E-T-539: Developing a Method for Dose Heterogeneity Corrections for Cs-137 Brachytherapy Sources. Medical Physics, 2013, 40, 329-329.	3.0	0
43	Characteristics of miniature electronic brachytherapy xâ€ray sources based on TGâ€43U1 formalism using Monte Carlo simulation techniques. Medical Physics, 2012, 39, 1971-1979.	3.0	16
44	Investigation of Tissue Heterogeneity on the TG-43 Parameters for a Typical Electronic Brachytherapy X-Ray Source, Using Monte Carlo Simulation Method. Brachytherapy, 2010, 9, S45.	0.5	1
45	Design of a Minature Electronic Brachytherapy X-Ray Source and Its TG-43 Dosimetric Parametrization Using Monte Carlo Simulation Technique. Brachytherapy, 2010, 9, S47.	0.5	1