Julian M W Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704892/publications.pdf

Version: 2024-02-01

186265 276875 2,268 41 28 citations h-index papers

g-index 42 42 42 3754 all docs docs citations times ranked citing authors

41

#	Article	IF	CITATIONS
1	Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor–Donor–Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 4456-4464.	2.6	15
2	Symmetrical and unsymmetrical fluorine-rich ullazines <i>via</i> controlled cycloaromatizations. Organic Chemistry Frontiers, 2020, 7, 787-795.	4.5	11
3	Pentafluorosulfanyl group: an emerging tool in optoelectronic materials. Journal of Materials Chemistry C, 2019, 7, 12822-12834.	5.5	40
4	Intramolecular charge transfer and solvation dynamics of push–pull dyes with different π-conjugated linkers. Physical Chemistry Chemical Physics, 2019, 21, 17323-17331.	2.8	30
5	Pentafluorosulfanylated polymers as electrets in nonvolatile organic field-effect transistor memory devices. Journal of Materials Chemistry C, 2019, 7, 7865-7871.	5.5	19
6	Water-Dispersible Bismuth–Organic Materials with Computed Tomography Contrast Properties. ACS Applied Bio Materials, 2018, 1, 1918-1926.	4.6	10
7	Using the Negative Hyperconjugation Effect of Pentafluorosulfanyl Acceptors to Enhance Two-Photon Absorption in Push–Pull Chromophores. Chemistry of Materials, 2018, 30, 7055-7066.	6.7	39
8	Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Letters, 2017, 6, 176-180.	4.8	35
9	Highly potent antimicrobial polyionenes with rapid killing kinetics, skin biocompatibility and inÂvivo bactericidal activity. Biomaterials, 2017, 127, 36-48.	11.4	81
10	Pulling with the Pentafluorosulfanyl Acceptor in Push–Pull Dyes. Journal of Organic Chemistry, 2017, 82, 11008-11020.	3.2	43
11	Reversibly thermochromic bismuth-organic materials with tunable optical gaps. Journal of Materials Chemistry C, 2017, 5, 10007-10015.	5.5	21
12	Sultam-Based Hetero[5]helicene: Synthesis, Structure, and Crystallization-Induced Emission Enhancement. ACS Omega, 2016, 1, 1336-1342.	3.5	21
13	Design and synthesis of biodegradable grafted cationic polycarbonates as broad spectrum antimicrobial agents. Journal of Polymer Science Part A, 2016, 54, 1029-1035.	2.3	16
14	Organocatalytic Anticancer Drug Loading of Degradable Polymeric Mixed Micelles via a Biomimetic Mechanism. Macromolecules, 2016, 49, 2013-2021.	4.8	38
15	Thermoresponsive Random Poly(ether urethanes) with Tailorable LCSTs for Anticancer Drug Delivery. Macromolecular Rapid Communications, 2015, 36, 1761-1767.	3.9	37
16	Polyurethane-coated silica particles with broad-spectrum antibacterial properties. Polymer Chemistry, 2015, 6, 2011-2022.	3.9	18
17	Hydrophilic Polycarbonates: Promising Degradable Alternatives to Poly(ethylene glycol)-Based Stealth Materials. Macromolecules, 2015, 48, 1673-1678.	4.8	64
18	Broad-Spectrum Antimicrobial Polycarbonate Hydrogels with Fast Degradability. Biomacromolecules, 2015, 16, 1169-1178.	5.4	90

#	Article	IF	CITATIONS
19	Organocatalytic Ring-Opening Polymerization of Trimethylene Carbonate To Yield a Biodegradable Polycarbonate. Journal of Chemical Education, 2015, 92, 708-713.	2.3	27
20	Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Advanced Drug Delivery Reviews, 2014, 78, 46-62.	13.7	233
21	Chemically modifiable N-heterocycle-functionalized polycarbonates as a platform for diverse smart biomimetic nanomaterials. Chemical Science, 2014, 5, 3294-3300.	7.4	38
22	Highly tunable polyurethanes: organocatalyzed polyaddition and subsequent post-polymerization modification of pentafluorophenyl ester sidechains. Polymer Chemistry, 2014, 5, 3547-3550.	3.9	37
23	Overcoming Multidrug Resistance in Microbials Using Nanostructures Selfâ€Assembled from Cationic Bentâ€Core Oligomers. Small, 2014, 10, 4130-4135.	10.0	28
24	Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Journal of Controlled Release, 2014, 193, 9-26.	9.9	109
25	Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of N-Activation over O-Activation of Isocyanates. Journal of the American Chemical Society, 2013, 135, 16235-16241.	13.7	76
26	Tetra- <i>n</i> -butylammonium Fluoride as an Efficient Transesterification Catalyst for Functionalizing Cyclic Carbonates and Aliphatic Polycarbonates. ACS Macro Letters, 2013, 2, 860-864.	4.8	29
27	Accessing New Materials through Polymerization and Modification of a Polycarbonate with a Pendant Activated Ester. Macromolecules, 2013, 46, 1283-1290.	4.8	74
28	Polycarbonate-Based Brush Polymers with Detachable Disulfide-Linked Side Chains. ACS Macro Letters, 2013, 2, 332-336.	4.8	48
29	Homogeneous isocyanate- and catalyst-free synthesis of polyurethanes in aqueous media. Green Chemistry, 2013, 15, 1121.	9.0	44
30	Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catalysis, 2013, 3, 1369-1377.	11.2	150
31	Tandem cycloisomerization/Suzuki coupling of arylethynyl MIDA boronates. Tetrahedron, 2011, 67, 4306-4312.	1.9	39
32	Synthesis of Stair-Stepped Polymers Containing Dibenz[<i>a</i> , <i>h</i>]anthracene Subunits. Macromolecules, 2010, 43, 2789-2793.	4.8	13
33	Synthesis of J-Aggregating Dibenz[<i>a</i> , <i>j</i>]anthracene-Based Macrocycles. Journal of the American Chemical Society, 2009, 131, 5659-5666.	13.7	79
34	Bisphosphonate inhibitors of ATP-mediated HIV-1 reverse transcriptase catalyzed excision of chain-terminating $3\hat{a}\in^2$ -azido, $3\hat{a}\in^2$ -deoxythymidine: A QSAR investigation. Bioorganic and Medicinal Chemistry, 2008, 16, 8959-8967.	3.0	22
35	Synthesis of arylethynylated cyclohexa-m-phenylenes via sixfold Suzuki coupling. Tetrahedron Letters, 2008, 49, 4912-4914.	1.4	16
36	Inhibition of Trypanosomacruzi Hexokinase by Bisphosphonates. Journal of Medicinal Chemistry, 2006, 49, 215-223.	6.4	79

#	Article	IF	CITATIONS
37	Pyridinium-1-yl Bisphosphonates Are Potent Inhibitors of Farnesyl Diphosphate Synthase and Bone Resorption. Journal of Medicinal Chemistry, 2005, 48, 2957-2963.	6.4	77
38	Bisphosphonate Inhibitors of Toxoplasmagondi Growth: Â In Vitro, QSAR, and In Vivo Investigations. Journal of Medicinal Chemistry, 2005, 48, 3130-3140.	6.4	94
39	Bisphosphonate Inhibition of the Exopolyphosphatase Activity of the Trypanosoma bruce i Soluble Vacuolar Pyrophosphatase. Journal of Medicinal Chemistry, 2005, 48, 6128-6139.	6.4	59
40	Quantitative Structureâ [^] 'Activity Relationships for Î ³ Î [^] T Cell Activation by Bisphosphonates. Journal of Medicinal Chemistry, 2004, 47, 375-384.	6.4	114
41	Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo. Journal of Medicinal Chemistry, 2004, 47, 175-187.	6.4	155