Georgina M Ellison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes, 2022, 71, 1081-1098.	0.3	30
2	A protocol for extracting immunolabeled murine cardiomyocytes of high-quality RNA by laser capture microdissection. STAR Protocols, 2022, 3, 101231.	0.5	0
3	Human primary skeletal muscleâ€derived myoblasts and fibroblasts reveal different senescent phenotypes. JCSM Rapid Communications, 2022, 5, 226-238.	0.6	4
4	Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Scientific Reports, 2022, 12, .	1.6	2
5	Editorial commentary: The cardiac regeneration interchange. Trends in Cardiovascular Medicine, 2020, 30, 344-345.	2.3	1
6	First evidence that senolytics are effective at decreasing senescent cells in humans. EBioMedicine, 2020, 56, 102473.	2.7	33
7	Vascular Manifestations of COVID-19 – Thromboembolism and Microvascular Dysfunction. Frontiers in Cardiovascular Medicine, 2020, 7, 598400.	1.1	65
8	Senescent cells: targeting and therapeutic potential of senolytics in age-related diseases with a particular focus on the heart. Expert Opinion on Therapeutic Targets, 2020, 24, 819-823.	1.5	5
9	The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Frontiers in Cardiovascular Medicine, 2020, 7, 602183.	1.1	26
10	Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. , 2020, 11, 216.		921
11	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
12	Atrial myxomas arise from multipotent cardiac stem cells. European Heart Journal, 2020, 41, 4332-4345.	1.0	51
13	c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death and Disease, 2019, 10, 436.	2.7	43
14	Agedâ€senescent cells contribute to impaired heart regeneration. Aging Cell, 2019, 18, e12931.	3.0	202
15	Non-invasive strategies for stimulating endogenous repair and regenerative mechanisms in the damaged heart. Pharmacological Research, 2018, 127, 33-40.	3.1	12
16	Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. , 2017, 171, 1-12.		27
17	Active GSK3 \hat{l}^2 and an intact \hat{l}^2 -catenin TCF complex are essential for the differentiation of human myogenic progenitor cells. Scientific Reports, 2017, 7, 13189.	1.6	19
18	178â€Application of cardiac mri to quantitatively assess myocardial damage in isoproterenol-induced heart failure. Heart, 2017, 103, A123,2-A124.	1.2	0

GEORGINA M ELLISON

#	Article	IF	CITATIONS
19	Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death and Differentiation, 2017, 24, 2101-2116.	5.0	131
20	Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells EnhanceÂEndogenous Repair of InjuredÂPorcine Skeletal Muscle. JACC Basic To Translational Science, 2017, 2, 717-736.	1.9	4
21	Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Research and Therapy, 2017, 8, 158.	2.4	24
22	Cardiac Stem Cells for Myocardial Regeneration: They Are Not Alone. Frontiers in Cardiovascular Medicine, 2017, 4, 47.	1.1	54
23	Progenitor Cells from the Adult Heart. Cardiac and Vascular Biology, 2017, , 19-39.	0.2	2
24	Basic science behind the cardiovascular benefits of exercise. British Journal of Sports Medicine, 2016, 50, 93-99.	3.1	73
25	Cardiac adaptations from 4Âweeks of intensity-controlled vigorous exercise are lost after a similar period of detraining. Physiological Reports, 2015, 3, e12302.	0.7	21
26	Basic science behind the cardiovascular benefits of exercise. Heart, 2015, 101, 758-765.	1.2	90
27	Republished: Basic science behind the cardiovascular benefits of exercise. Postgraduate Medical Journal, 2015, 91, 704-711.	0.9	9
28	Abstract 15142: Endogenous Cardiac Stem Cells' Activation in Response to Injury Potentiates Their Regenerative Ability. Circulation, 2015, 132, .	1.6	0
29	Carbonic Anhydrase Activation Is Associated With Worsened Pathological Remodeling in Human Ischemic Diabetic Cardiomyopathy. Journal of the American Heart Association, 2014, 3, e000434.	1.6	79
30	The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal, 2014, 35, 2722-2731.	1.0	156
31	Porcine Skeletal Muscle-Derived Multipotent PW1pos/Pax7negInterstitial Cells: Isolation, Characterization, and Long-Term Culture. Stem Cells Translational Medicine, 2014, 3, 702-712.	1.6	17
32	Response to Molkentin's Letter to The Editor Regarding Article, "The Absence of Evidence Is Not Evidence of Absence: The Pitfalls of Cre Knock-Ins in the c-kit Locusâ€: Circulation Research, 2014, 115, e38-9.	2.0	14
33	Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart. Journal of Cardiovascular Translational Research, 2014, 7, 232-241.	1.1	93
34	Adult c-kit ^{pos} Cardiac Stem Cells Fulfill Koch's Postulates as Causal Agents for Cardiac Regeneration. Circulation Research, 2014, 114, e24-6.	2.0	20
35	Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nature Protocols, 2014, 9, 1662-1681.	5.5	102
36	Absence of Evidence Is Not Evidence of Absence. Circulation Research, 2014, 115, 415-418.	2.0	58

GEORGINA M ELLISON

#	Article	IF	CITATIONS
37	The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Research, 2014, 13, 615-630.	0.3	87
38	Adult Cardiac Stem Cells: Identity, Location and Potential. Pancreatic Islet Biology, 2014, , 47-90.	0.1	1
39	Adult c-kitpos Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair. Cell, 2013, 154, 827-842.	13.5	469
40	Concise Review: Heart Regeneration and the Role of Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 434-443.	1.6	69
41	The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling. BMJ Case Reports, 2013, 2013, bcr2012007668-bcr2012007668.	0.2	6
42	MicroRNA-1 Downregulation Increases Connexin 43 Displacement and Induces Ventricular Tachyarrhythmias in Rodent Hypertrophic Hearts. PLoS ONE, 2013, 8, e70158.	1.1	67
43	Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart, 2012, 98, 5-10.	1.2	218
44	Optimizing Cardiac Repair and Regeneration Through Activation of the Endogenous Cardiac Stem Cell Compartment. Journal of Cardiovascular Translational Research, 2012, 5, 667-677.	1.1	32
45	Endogenous Cardiac Stem Cell Activation by Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Intracoronary Injection Fosters Survival and Regeneration of the Infarcted Pig Heart. Journal of the American College of Cardiology, 2011, 58, 977-986.	1.2	227
46	MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circulation Research, 2011, 109, 880-893.	2.0	280
47	Isolation and Expansion of Cardiosphereâ€Derived Stem Cells. Current Protocols in Stem Cell Biology, 2011, 16, 2C.3.1.	3.0	12
48	Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study. PLoS ONE, 2011, 6, e25669.	1.1	70
49	c-kitpos GATA-4 High Rat Cardiac Stem Cells Foster Adult Cardiomyocyte Survival through IGF-1 Paracrine Signalling. PLoS ONE, 2010, 5, e14297.	1.1	76
50	Cardiac stem and progenitor cell identification Different markers for the same cell. Frontiers in Bioscience - Scholar, 2010, S2, 641-652.	0.8	37
51	Characterization of Long-Term Cultured c-kit ⁺ Cardiac Stem Cells Derived From Adult Rat Hearts. Stem Cells and Development, 2010, 19, 105-116.	1.1	111
52	LOWERing the INtensity of oral anticoaGulant Therapy in patients with bileaflet mechanical aortic valve replacement: Results from the "LOWERING-IT―Trial. American Heart Journal, 2010, 160, 171-178.	1.2	93
53	The role of endothelial progenitor and cardiac stem cells in the cardiovascular adaptations to age and exercise. Frontiers in Bioscience - Landmark, 2009, Volume, 4685.	3.0	33
54	Differential regulation of vascular smooth muscle and endothelial cell proliferation in vitro and in vivo by cAMP/PKA-activated p851± ^{PI3K} . American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2015-H2025.	1.5	38

GEORGINA M ELLISON

#	ARTICLE	IF	CITATIONS
55	Cardiac Stem Cell-Based Myocardial Regeneration: Towards a Translational Approach. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 53-59.	0.4	19
56	Growth-factor-mediated cardiac stem cell activation in myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S46-S51.	3.3	45
57	Acute β-Adrenergic Overload Produces Myocyte Damage through Calcium Leakage from the Ryanodine Receptor 2 but Spares Cardiac Stem Cells. Journal of Biological Chemistry, 2007, 282, 11397-11409.	1.6	146
58	Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S52-S59.	3.3	56
59	Fludarabine prevents smooth muscle proliferation in vitro and neointimal hyperplasia in vivo through specific inhibition of STAT-1 activation. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2935-H2943.	1.5	61
60	Cardiovascular development: towards biomedical applicability. Cellular and Molecular Life Sciences, 2007, 64, 661-673.	2.4	86
61	Cardiovascular Regenerative Medicine at the Crossroads. Clinical Trials of Cellular Therapy Must Now Be Based on Reliable Experimental Data From Animals With Characteristics Similar to Human's. Revista Espanola De Cardiologia (English Ed), 2006, 59, 1175-1189.	0.4	12
62	Testing Regeneration of Human Myocardium Without Knowing the Identity and the Number of Effective Bone Marrow Cells Transplanted: Are the Results Meaningful?. Journal of the American College of Cardiology, 2006, 48, 417.	1.2	5
63	Resident progenitors and bone marrow stem cells in myocardial renewal and repair. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S83-S89.	3.3	22
64	Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S8-S13.	3.3	150
65	Relative Toxicity of Cardiotonic Agents: Some Induce More Cardiac and Skeletal Myocyte Apoptosis and Necrosis In Vivo Than Others. Cardiovascular Toxicology, 2005, 5, 355-364.	1.1	28
66	Cardiac Stem and Progenitor Cell Biology for Regenerative Medicine. Trends in Cardiovascular Medicine, 2005, 15, 229-236.	2.3	44
67	Increased Vascular Endothelial Growth Factor Expression But Impaired Vascular Endothelial Growth Factor Receptor Signaling in the Myocardium of Type 2 Diabetic Patients With Chronic Coronary Heart Disease. Journal of the American College of Cardiology, 2005, 46, 827-834.	1.2	158
68	Aging exacerbates negative remodeling and impairs endothelial regeneration after balloon injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2850-H2860.	1.5	53
69	Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the ratin vivo: the same or separate death pathways?. Experimental Physiology, 2004, 89, 407-416.	0.9	82