Anja C Nagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704252/publications.pdf Version: 2024-02-01

ANIA C NACEL

#	Article	IF	CITATIONS
1	Nucleo-cytoplasmic shuttling of murine RBPJ by Hairless protein matches that of Su(H) protein in the model system Drosophila melanogaster. Hereditas, 2021, 158, 11.	1.4	4
2	Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Frontiers in Cell and Developmental Biology, 2021, 9, 658820.	3.7	10
3	The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster. Biomolecules, 2021, 11, 1672.	4.0	1
4	Limited Availability of General Co-Repressors Uncovered in an Overexpression Context during Wing Venation in Drosophila melanogaster. Genes, 2020, 11, 1141.	2.4	1
5	Drosophila Xrcc2 regulates DNA double-strand repair in somatic cells. DNA Repair, 2020, 88, 102807.	2.8	3
6	Nucleo-cytoplasmic shuttling of Drosophila Hairless/Su(H) heterodimer as a means of regulating Notch dependent transcription. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1520-1532.	4.1	13
7	Loss of putzig in the germline impedes germ cell development by inducing cell death and new niche like microenvironments. Scientific Reports, 2019, 9, 9108.	3.3	5
8	Protein Kinase D Is Dispensable for Development and Survival of Drosophila melanogaster. G3: Genes, Genomes, Genetics, 2019, 9, 2477-2487.	1.8	9
9	Genetic interactions between Protein Kinase D and Lobe mutants during eye development of Drosophila melanogaster. Hereditas, 2019, 156, 37.	1.4	1
10	An RBPJ-Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription–Regulator Complexes. Cells, 2019, 8, 1252.	4.1	5
11	Overexpression of the Drosophila ATR homologous checkpoint kinase Mei-41 induces a C2/M checkpoint in Drosophila imaginal tissue. Hereditas, 2018, 155, 27.	1.4	6
12	Complex genetic interactions of novel Suppressor of Hairless alleles deficient in co-repressor binding. PLoS ONE, 2018, 13, e0193956.	2.5	3
13	Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Scientific Reports, 2017, 7, 11820.	3.3	10
14	p53 and cyclin G cooperate in mediating genome stability in somatic cells of Drosophila. Scientific Reports, 2017, 7, 17890.	3.3	8
15	Hairless-binding deficient Suppressor of Hairless alleles reveal Su(H) protein levels are dependent on complex formation with Hairless. PLoS Genetics, 2017, 13, e1006774.	3.5	23
16	Drosophila Cyclin G Is a Regulator of the Notch Signalling Pathway during Wing Development. PLoS ONE, 2016, 11, e0151477.	2.5	8
17	A triangular connection between Cyclin G, PP2A and Akt1 in the regulation of growth and metabolism in Drosophila. Fly, 2016, 10, 11-18.	1.7	9
18	Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila. Data in Brief, 2015, 5, 852-863.	1.0	3

Anja C Nagel

#	Article	IF	CITATIONS
19	Loss of putzig Activity Results in Apoptosis during Wing Imaginal Development in Drosophila. PLoS ONE, 2015, 10, e0124652.	2.5	12
20	Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster. PLoS ONE, 2015, 10, e0140007.	2.5	13
21	MAPK-dependent phosphorylation modulates the activity of Suppressor of Hairless in Drosophila. Cellular Signalling, 2015, 27, 115-124.	3.6	17
22	Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila. PLoS Genetics, 2015, 11, e1005440.	3.5	15
23	Mutation of potential MAPK phosphorylation sites in the Notch antagonist Hairless. Hereditas, 2014, 151, 102-108.	1.4	2
24	Cyclin G is involved in meiotic recombination repair in Drosophila melanogaster. Journal of Cell Science, 2012, 125, 5555-63.	2.0	13
25	Dorso-ventral axis formation of theDrosophilaoocyte requires Cyclin G. Hereditas, 2012, 149, 186-196.	1.4	7
26	<i>Drosophila rugose</i> Is a Functional Homolog of Mammalian <i>Neurobeachin</i> and Affects Synaptic Architecture, Brain Morphology, and Associative Learning. Journal of Neuroscience, 2012, 32, 15193-15204.	3.6	34
27	Phosphorylation of Ser 402 impedes phosphatase activity of slingshot 1. EMBO Reports, 2011, 12, 527-533.	4.5	22
28	Fine tuning of Notch signaling by differential co-repressor recruitment during eye development of Drosophila. Hereditas, 2011, 148, 77-84.	1.4	16
29	The Putzig-NURF Nucleosome Remodeling Complex Is Required for Ecdysone Receptor Signaling and Innate Immunity in Drosophila melanogaster. Genetics, 2011, 188, 127-139.	2.9	32
30	Constitutively active Protein kinase D acts as negative regulator of the Slingshot-phosphatase in Drosophila. Hereditas, 2010, 147, 237-242.	1.4	10
31	A Novel Pzg-NURF Complex Regulates Notch Target Gene Activity. Molecular Biology of the Cell, 2010, 21, 3443-3448.	2.1	26
32	Structural analysis of point mutations in the Hairless gene and their association with the activity of the Hairless protein. International Journal of Biological Macromolecules, 2008, 43, 426-432.	7.5	2
33	Hairless induces cell death by downregulation of EGFR signalling activity. Journal of Cell Science, 2008, 121, 3167-3176.	2.0	29
34	The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in Drosophila. PLoS ONE, 2008, 3, e1658.	2.5	20
35	putzig Is Required for Cell Proliferation and Regulates Notch Activity in Drosophila. Molecular Biology of the Cell, 2007, 18, 3733-3740.	2.1	35
36	Protein Kinase D regulates several aspects of development in Drosophila melanogaster. BMC Developmental Biology, 2007, 7, 74.	2.1	18

Anja C Nagel

#	Article	IF	CITATIONS
37	Involvement of co-repressors Groucho and CtBP in the regulation of single-minded in Drosophila. Hereditas, 2007, 144, 195-205.	1.4	9
38	Drosophila protein kinase D is broadly expressed and a fraction localizes to the Golgi compartment. Gene Expression Patterns, 2006, 6, 849-856.	0.8	18
39	A molecular link A molecular link between Hairless and Pros26.4, a member of the AAA-ATPase subunits of the proteasome 19S regulatory particle in Drosophila. Journal of Cell Science, 2006, 119, 250-258.	2.0	13
40	Genetic Modifier Screens on Hairless Gain-of-Function Phenotypes Reveal Genes Involved in Cell Differentiation, Cell Growth and Apoptosis in Drosophila melanogaster. Genetics, 2005, 171, 1137-1152.	2.9	41
41	Hairless-Mediated Repression of Notch Target Genes Requires the Combined Activity of Groucho and CtBP Corepressors. Molecular and Cellular Biology, 2005, 25, 10433-10441.	2.3	119
42	Neurogenic phenotypes induced by RNA interference with bHLH genes of theEnhancer of splitcomplex ofDrosophila melanogaster. Genesis, 2004, 39, 105-114.	1.6	11
43	Nonlinear partial differential equations and applications: Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15480-15485.	7.1	50
44	Genetic screen for modifiers of the rough eye phenotype resulting from overexpression of the notch antagonist hairless indrosophila. Genesis, 2002, 33, 141-152.	1.6	20
45	Green fluorescent protein as a convenient and versatile marker for studies on functional genomics in Drosophila. Development Genes and Evolution, 2002, 212, 93-98.	0.9	38
46	Dynamic expression of Drosophila TRAF1 during embryogenesis and larval development. Mechanisms of Development, 2001, 100, 109-113.	1.7	28
47	scalloped and strawberry notch are target genes of Notch signaling in the context of wing margin formation in Drosophila. Mechanisms of Development, 2001, 109, 241-251.	1.7	18
48	Su(H)-independent activity of Hairless during mechano-sensory organ formation in Drosophila. Mechanisms of Development, 2000, 94, 3-12.	1.7	37
49	Neural hyperplasia induced by RNA interference with m4/mα gene activity. Mechanisms of Development, 2000, 98, 19-28.	1.7	8
50	Enhancer ofSplit [E(spl)D] is a gro-independent, hypermorphic mutation inDrosophila. , 1999, 25, 168-179.		15
51	Overexpression of the m4 and mα genes of the E(spl)-Complex antagonizes Notch mediated lateral inhibition. Mechanisms of Development, 1999, 86, 39-50.	1.7	22
52	Subcellular localization of Hairless protein shows a major focus of activity within the nucleus. Mechanisms of Development, 1999, 89, 195-199.	1.7	47
53	NotchsplIs Deficient for Inductive Processes in the Eye, andE(spl)DEnhancessplitby Interfering with Proneural Activity. Developmental Biology, 1999, 208, 406-415.	2.0	27